• 제목/요약/키워드: Suspension stability

검색결과 410건 처리시간 0.026초

자기부상시스템의 외란에 대한 칼만필터와 저역통과필터의 필터링 성능 비교 (Comparison of Filtering Performance between Kalman Filter and Low Pass Filter for disturbance of Magnetic Levitation System)

  • 성호경;정병수;조정민;장석명;유문환;이종민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1337-1339
    • /
    • 2004
  • The existing problems of the Electro-Magnetic Suspension system such as air-gap disturbance, mass variation and actuator/sensor failure are described in amore specific manner. General active filter has a bad influence on suspension stability. Kalman Filter is based on statistical parameter. Thus, in this paper, It is shown that filtering performance of Kalman Filter and Active filter is excellent with simulation and experiment, stability analyze for air-gap disturbance.

  • PDF

Analytical and experimental study on aerodynamic control of flutter and buffeting of bridge deck by using mechanically driven flaps

  • Phan, Duc-Huynh;Kobayshi, Hiroshi
    • Structural Engineering and Mechanics
    • /
    • 제46권4호
    • /
    • pp.549-569
    • /
    • 2013
  • A passive control using flaps will be an alternative solution for flutter stability and buffeting response of a long suspension bridge. This method not only enables a lightweight economic stiffening girder without an additional stiffness for aerodynamic stability but also avoid the problems from the malfunctions of control systems and energy supply system of an active control by winglets and flaps. A time domain approach for predicting the coupled flutter and buffeting response of bridge deck with flaps is investigated. First, the flutter derivatives of bridge deck and flaps are found by experiment. Next, the derivation of time domain model of self-excited forces and control forces of sectional model is reported by using the rational function approximation. Finally, the effectiveness of passive flap control is investigated by the numerical simulation. The results show that the passive control by using flaps can increase the flutter speed and decrease the buffeting response. The experiment results are matched with numerical ones.

전복 안정성을 고려한 SUV 현가장치 파라미터의 최적설계 (Optimum Design of SUV Suspension Parameters Considering Rollover Stability)

  • 이상범;장영진;임홍재;나도백
    • 한국생산제조학회지
    • /
    • 제18권4호
    • /
    • pp.410-416
    • /
    • 2009
  • In recent years, the rollover accident of large class of vehicles has become important safety issue. Even though the rollover form a small percentage of all traffic accidents, they have a fatal effect upon the driver and passenger. Among the traffic accidents occurred in driving, the rollover is the major cause of traffic fatalities. Therefore, it is required to develop the analytical and experimental techniques for predicting rollover propensity of vehicles and also to improve the vehicle suspension design in the viewpoint of rollover resistance. In this study, the parameter sensitivities for the roll angle of SUV suspension are analyzed, and then the determined design parameters are optimized by using the regression model function of the response surface methods. The analysis results show that the roll angle of the optimized vehicle is decreased as compared with the initial vehicle and also the rollover possibility is decreased when the roll rate of the front suspension is larger than the roll rate of the rear suspension.

  • PDF

수성 현탁액에서 카르복실기를 포함하는 혼합 분산제에 의한 이트리아 안정화 지르코니아의 분산성 향상 (Enhanced Dispersion of Yttria Stabilized Zirconia by Mixed Dispersants Containing Carboxyl Group in Aqueous System)

  • 김수현;강종봉;배성환
    • 한국재료학회지
    • /
    • 제28권2호
    • /
    • pp.82-88
    • /
    • 2018
  • Stable slurries of YSZ in aqueous suspension with added polymer dispersants, namely, poly-methacrylic acid ammonium salt (PMMA), poly-acrylic acid (PAA) and poly-acrylic-co-maleic acid (PAMA), were mixed with the monomolecular dispersants citric acid and oxalic acid. The dispersion properties of the suspension were investigated using PSA, viscosity, sedimentation, and FT-IR. The polymer dispersants and monomolecular dispersants were attached to the YSZ surface by the carboxylic group, as shown by the FTIR results. A stabilized aqueous suspension was obtained when the polymer dispersant and citric acid were mixed and compared to the use of citric acid alone as a dispersant agent. When the polymer dispersant and citric acid were mixed and milled through attrition milling, there was a smaller particle size compared to when the polymer dispersant alone was used as a dispersant agent. This study determined that the particle size of the mixed dispersant was affected by the properties of the monomolecular dispersant and that the stability of the suspension was affected by the polymer dispersant. However, when slurries of YSZ were mixed with oxalic acid, the particle bridging behavior was the result of the high degree of viscosity and the small sedimentation height.

도시철도차량 세브론 고무 특성 변화가 진동승차감 레벨에 미치는 영향 연구 (A Study on the Effect of Changes in Chevron Rubber Characteristics on the Vibrational Ride Comfort Level of a Subway Vehicle)

  • 박남철;구정서
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.57-65
    • /
    • 2016
  • The suspension system of a subway vehicle is composed of $1^{st}$ and $2^{nd}$ springs. The suspension system is the most important parameter in determining the vibration ride comfort. If the $1^{st}$ suspension spring is designed as a spring with strong stiffness to improve the running stability at high speed, it causes vehicle vibrations. In this paper, by testing and analyzing changes of the characteristics of Chevron springs, which have been the primary suspension springs used for about 20 years, we study how changing the characteristics affects vehicle acceleration and ride comfort. The lateral and longitudinal vibrational ride comfort index levels were lower than the vertical ones. Therefore, as increasing the stiffness of Chevron springs has the greatest effect on the vertical vibrational ride comfort index level, a countermeasure for vertical vibration reduction is needed when the stiffness increases owing to aging. Finally, maintenance guidelines, including the replacement time for the Chevron rubber, were proposed based on these findings.

차량 현가장치 성능향상을 위한 댐퍼 최적화 설계에 대한 연구 (A Study on the Optimization Design of Damper for the Improvement of Vehicle Suspension Performance)

  • 이춘태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.74-80
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of vehicle. It converting the kinetic energy of the shock into another form of energy, typically heat. In a vehicle, a damper reduce vibration of car, leading to improved ride comfort and running stability. Therefore, a damper is one of the most important components in a vehicle suspension system. Conventionally, the design process of vehicle suspensions has been based on trial and error approaches, where designers iteratively change the values of the design variables and reanalyze the system until acceptable design criteria are achieved. Therefore, the ability to tune a damper properly without trial and error is of great interest in suspension system design to reduce time and effort. For this reason, a many previous researches have been done on modeling and simulation of the damper. In this paper, we have conducted optimal design process to find optimal design parameters of damping force which minimize a acceleration of sprung mass for a given suspension system using genetic algorithm.

The humeral suspension technique: a novel operation for deltoid paralysis

  • de Joode, Stijn GCJ;Walbeehm, Ralf;Schotanus, Martijn GM;van Nie, Ferry A;van Rhijn, Lodewijk W;Samijo, Steven K
    • Clinics in Shoulder and Elbow
    • /
    • 제25권3호
    • /
    • pp.240-243
    • /
    • 2022
  • Isolated deltoid paralysis is a rare pathology that can occur after axillary nerve injury due to shoulder trauma or infection. This condition leads to loss of deltoid function that can cause glenohumeral instability and inferior subluxation, resulting in rotator cuff muscle fatigue and pain. To establish dynamic glenohumeral stability, a novel technique was invented. Humeral suspension is achieved using a double button implant with non-resorbable high strength cords between the acromion and humeral head. This novel technique was used in two patients with isolated deltoid paralysis due to axillary nerve injury. The results indicate that the humeral suspension technique is a method that supports centralizing the humeral head and simultaneously dynamically stabilizes the glenohumeral joint. This approach yielded high patient satisfaction and reduced pain. Glenohumeral alignment was improved and remained intact 5 years postoperative. The humeral suspension technique is a promising surgical method for subluxated glenohumeral joint instability due to isolated deltoid paralysis.

Aerodynamic flutter analysis of a new suspension bridge with double main spans

  • Zhang, W.M.;Ge, Y.J.;Levitan, M.L.
    • Wind and Structures
    • /
    • 제14권3호
    • /
    • pp.187-208
    • /
    • 2011
  • Based on the ANSYS, an approach of full-mode aerodynamic flutter analysis for long-span suspension bridges has been presented in this paper, in which the nonlinearities of structure, aerostatic and aerodynamic force due to the deformation under the static wind loading are fully considered. Aerostatic analysis is conducted to predict the equilibrium position of a bridge structure in the beginning, and then flutter analysis of such a deformed bridge structure is performed. A corresponding computer program is developed and used to predict the critical flutter wind velocity and the corresponding flutter frequency of a long-span suspension bridge with double main span. A time-domain analysis of the bridge is also carried out to verify the frequency-domain computational results and the effectiveness of the approach proposed in this paper. Then, the nonlinear effects on aerodynamic behaviors due to aerostatic action are discussed in detail. Finally, the results are compared with those of traditional suspension bridges with single main span. The results show that the aerostatic action has an important influence on the flutter stability of long-span suspension bridges. As for a suspension bridge with double main spans, the flutter mode is the first anti-symmetrical torsional vibration mode, which is also the first torsional vibration mode in natural mode list. Furthermore, a double main-span suspension bridge is better in structural dynamic and aerodynamic performances than a corresponding single main-span structure with the same bridging capacity.

Highly-closed/-Open Porous Ceramics with Micro-Beads by Direct Foaming

  • Jang, Woo Young;Seo, Dong Nam;Park, Jung Gyu;Kim, Hyung Tae;Lee, Sung Min;Kim, Suk Young;Kim, Ik Jin
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.604-609
    • /
    • 2016
  • This study reports on wet-foam stability with respect to porous ceramics from a particle-stabilized colloidal suspension that is achieved through the addition of polymethyl methacrylate (PMMA) using a wet process. To stabilize the wet foam, an initial colloidal suspension of $Al_2O_3$ was partially hydrophobized by the surfactant propyl gallate (2 wt.%) and $SiO_2$ was added as a stabilizer. The influence of the PMMA content on the bubble size, pore size, and pore distribution in terms of the contact angle, surface tension, adsorption free energy, and Laplace pressure are described in this paper. The results show a wet-foam stability of more than 83%, which corresponds to a particle free energy of $2.7{\times}10^{-12}J$ and a pressure difference of 61.1 mPa for colloidal particles with 20 wt.% of PMMA beads. It was possible to control the uniform distribution of the open/closed pores by increasing the PMMA content and by adding thick struts, leading to the achievement of a higher-stability wet foam for use in porous ceramics.

Wet Foam Stability from Colloidal Suspension to Porous Ceramics: A Review

  • Kim, Ik Jin;Park, Jung Gyu;Han, Young Han;Kim, Suk Young;Shackelford, James F.
    • 한국세라믹학회지
    • /
    • 제56권3호
    • /
    • pp.211-232
    • /
    • 2019
  • Porous ceramics are promising materials for a number of functional and structural applications that include thermal insulation, filters, bio-scaffolds for tissue engineering, and preforms for composite fabrication. These applications take advantage of the special characteristics of porous ceramics, such as low thermal mass, low thermal conductivity, high surface area, controlled permeability, and low density. In this review, we emphasize the direct foaming method, a simple and versatile approach that allows the fabrication of porous ceramics with tailored microstructure, along with distinctive properties. The wet foam stability is achieved under the controlled addition of amphiphiles to the colloidal suspension, which induce in situ hydrophobization, allowing the wet foam to resist coarsening and Ostwald ripening upon drying and sintering. Different components, like contact angle, adsorption free energy, air content, bubble size, and Laplace pressure, play vital roles in the stabilization of the particle stabilized wet foam to the porous ceramics. The mechanical behavior of the load-displacements curves of sintered samples was investigated using Herzian indentations testes. From the collected results, we found that microporous structures with pore sizes from 30 ㎛ to 570 ㎛ and the porosity within the range from 70% to 85%.