• Title/Summary/Keyword: Suspension model

Search Result 869, Processing Time 0.03 seconds

A Convergence Study by Structural Analysis on Torsion Beam Suspension of Rear Wheel (후륜 토션빔 서스펜션에 대한 구조해석에 의한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.187-192
    • /
    • 2019
  • In this study, the structural and fatigue analyses were carried out according to the configuration of rear wheel suspension of torsion beam. Three types of models similar to the actual torsional beam suspension are analyzed and we will find out which one is best on strength. The models of torsion beam suspension were designed in three types of models A, B and C through CATIA program and the results of structural and fatigue analyses were obtained by using the ANSYS program. We will confirm which model is better structurally than other models. According to the analysis results, the deformation happens to be the largest in the middle, and model B has the least deformation compared to model A and C. Similarly, model B is shown to have the smallest result at equivalent stress. So, model B is judged to be the best in terms of its strength, and it is thought to be the most efficient to converge into art design at the suspension design with a torsion beam of rear wheel.

A Study on the Appication of Semi-Active Supension Units for a Combat Vehicle by Using HILS (HILS를 활용한 전투차량의 반능동 현수장치 적용에 관한 연구)

  • Kim, Chi-Ung;Kim, Moon-June;Rhee, Eun-Jun;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.967-975
    • /
    • 2010
  • There have been a lot of efforts on the improvement for the ride comfort and handling stability of the combat vehicles. Especially most of vehicles for military purpose have bad inertial condition and severe operating condition such as the rough road driving, and need a high mobility in the emergency status. It is necessary to apply the controlled suspension system in order to improve the vehicle mobile stability and ride comfort ability of crews. A feasibility study is performed on the application of the semi-active suspension system with a magneto-rheological controlled shock absorber for a $6{\times}6$ combat vehicle. First, the dynamic simulation model of the vehicle including the control model for the semi-active suspension system was executed. Based on this model, a hardware-in-the-loop simulation(HILS) system which has a semi-active suspension controller hardware was constructed. After full vehicle simulations were performed in virtual proving courses with this system, the semi-active suspension system was proven to give better ride comfort and handling stability in comparison with the conventional passive suspension system.

Optimal Design of a Near-field Optical Recording Suspension (근접장 광기록용 서스펜션의 최적설계)

  • 조태민;임경화
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.295-302
    • /
    • 2004
  • In this study the optimization of a NFR suspension is performed using finite element method and experimental modal analysis. NFR suspensions are required to have low compliance modes to allow the slider to comply with the rotating disk, and high tracking stiffness modes to maximize the servo bandwidth of the tracking controller First of all, the dual suspension model is designed based on the characteristics of NFR drives. And the parametric study on the sensitivities of compliance modes and tracking stiffness modes is investigated. Finally, the model satisfying static characteristics is selected and shape optimization is performed to improve dynamic characteristics. A prototype of a NFR suspension is made by etching and modal ekperiment in free state is performed. The results of experiment almost agree with those of finite element method.

Vibration Control of MR Suspension System Considering Damping Force Hysteresis (댐핑력 히스테리시스를 고려한 MR 서스펜션의 진동제어)

  • Seong, Min-Sang;Sung, Kum-Gil;Han, Young-Min;Choi, Seung-Bok;Lee, Ho-Guen
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.381-386
    • /
    • 2007
  • This paper presents vibration control performances of a commercial magnetorheological (MR) suspension via new control strategy considering hysteresis of the field-dependent damping force of MR damper. A commercial MR damper which is applicable to high class passenger vehicle is adopted and its field-dependent damping force is experimentally evaluated. Preisach hysteresis model for the MR damper is identified using experimental first order descending (FOD) curves. Then, a feed-forward compensation strategy for the MR damper is formulated and integrated with a linear quadratic regulation (LQR) feedback controller for the suspension system. Control performances of the proposed control strategy for the MR suspension is experimentally evaluated with quarter vehicle test facility.

  • PDF

Vibration Control of MR Suspension System Considering Damping Force Hysteresis (댐핑력 히스테리시스를 고려한 MR 서스펜션의 진동제어)

  • Seong, Min-Sang;Sung, Kum-Gil;Han, Young-Min;Choi, Seung-Bok;Lee, Ho-Guen
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.315-322
    • /
    • 2008
  • This paper presents vibration control performances of a commercial magnetorheological(MR) suspension via new control strategy considering hysteresis of the field-dependent damping force of MR damper. A commercial MR damper which is applicable to high class passenger vehicle is adopted and its field-dependent damping force is experimentally evaluated. Preisach hysteresis model for the MR damper is identified using experimental first order descending(FOD) curves. Then, a feed-forward compensation strategy for the MR damper is formulated and integrated with a linear quadratic regulation(LQR) feedback controller for the suspension system. Control performances of the proposed control strategy for the MR suspension is experimentally evaluated with quarter vehicle test facility.

A Study on the Effects of Suspension Design Parameters on Cornering Performances of a Vehicle (차량의 선회성능에 미치는 현가장치 설계인자의 영향에 관한 연구)

  • 이장무;윤중락;강주석;정종혁;탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.27-37
    • /
    • 1996
  • In this paper the effects of suspension design parameters on the steady-state cornering performance of vehicles are studied. To investigate the understeer characteristics of vehicles, steady-state cornering equatons are derived from a two-track model which is expanded from a simple one track model. The effects of the suspension design parameters as well as those of lateral load transfer are taken into consideration. To verify the equation, a skid pad test was carried out with a domestic passenger car. The design parameters of the vehicle are measured using a Suspension Parameter Measuring Device(SPMD). Based on these results, parameter studies are carried out to determine the effect of design parameters on the cornering performance of a vehicle, both in low and high acceleration region.

  • PDF

Ride Quality of a Passenger Car with Nonlinear Suspension System (현가장치의 비선형성을 고려한 승용차의 승차감 해석)

  • Cho, Sung-Jin;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.838-843
    • /
    • 2005
  • The nonlinear characteristics of a suspension is directly related to the ride quality of a passenger car. In this study, a dynamic experiment for a spring and a damper of a passenger car is performed to analyze the nonlinear characteristics using MTS 1-axial testing machine and a mathematical nonlinear dynamic suspension model based on experimental data is devised to estimate the ride quality using Billings' method. The devised nonlinear model is applied to the ride quality analysis using K factor and the effect of suspension parameters is examined. As a result, the friction between the cylinder and the piston of a damper is the most effective parameter for the ride quality of a passenger car.

  • PDF

Compliance Effect Modeling based on Quasi-static Analysis for Real-time Multibody Vehicle Dynamics (실시간 다물체 차량 해석을 위한 준정적법의 컴플라이언스 효과 모델링)

  • Jeong, Wan-Hee;Ha, Kyoung-Nam;Kim, Sung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1003-1008
    • /
    • 2007
  • Compliance effect consideration method for real-time multibody vehicle dynamics is proposed using quasi-static analysis. The multibody vehicle model without bush elements is used based on the subsystem synthesis method which provides real-time computation on the multibody vehicle model. Reaction forces are computed in the suspension subsystem. According to deformation from the quasi-static analysis using reaction forces and bush stiffness, suspension hardpoint locations and suspension linkage orientation are changed. To validate the proposed method, quarter car simulations of McPherson strut and multilink suspension subsystems. Full car bump run simulations are also carried out comparing with the ADAMS vehicle model with bush elements. CPU times are also measured to see the real-time capabilities of the proposed method.

  • PDF

Modeling of Military Vehicle Suspension System Featuring Disc Spring and MR Valve (접시 스프링과 MR Valve를 적용한 군용차량 현수장치의 모델링)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Rhee, Eun-Jun;Kang, Pil-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.979-986
    • /
    • 2009
  • This paper presents a dynamic modeling of a military vehicle suspension featuring disc spring and MR valve. Firstly, the dynamic model of the disc spring is established with respect to the load and pressure. The nonlinear behavior of the spring is incorporated with the model. Secondly, the dynamic model of the MR valve is derived by considering the pressure drop due to the viscosity and yield stress of MR fluid. The governing characteristics of the proposed suspension system are then investigated by presenting the field-dependent pressure drop of the MR valve and spring force of the gas spring.

Compliance Effect Modeling Based on Quasi-Static Analysis for Real-Time Multibody Vehicle Dynamics (실시간 다물체 차량 해석을 위한 준정적법의 컴플라이언스 효과 모델링)

  • Kim, Sung-Soo;Jeong, Wan-Hee;Ha, Kyoung-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.162-169
    • /
    • 2008
  • Compliance effect consideration method for real-time multibody vehicle dynamics is proposed using quasi-static analysis. The multibody vehicle model without bush elements is used based on the subsystem synthesis method which provides real-time computation on the multibody vehicle model. Reaction forces are computed in the suspension subsystem. According to deformation from the quasi-static analysis using reaction forces and bush stiffness, suspension hardpoint locations and suspension linkage orientation are changed. To validate the proposed method, quarter car simulations of McPherson strut and multilink suspension subsystems are performed. Full car bump run simulations and fish hook handling test simulations are also carried out comparing with the ADAMS vehicle model with bush elements. CPU times are also measured to see the real-time capabilities of the proposed method.