• Title/Summary/Keyword: Susceptibility-weighted imaging (SWI)

Search Result 17, Processing Time 0.021 seconds

Hypointensity on Susceptibility-Weighted Images Prior to Signal Change on Diffusion-Weighted Images in a Hyperacute Ischemic Infarction: a Case Study

  • Kim, Dajung;Lee, Hyeonbin;Jung, Jin-Man;Lee, Young Hen;Seo, Hyung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.2
    • /
    • pp.131-134
    • /
    • 2018
  • Susceptibility-weighted imaging (SWI) is well known for detecting the presence of hemorrhagic transformation, microbleeds and the susceptibility of vessel signs in acute ischemic stroke. But in some cases, it can provide the tissue perfusion state as well. We describe a case of a patient with hyperacute ischemic infarction that had a slightly hypodense, patchy lesion at the left thalamus on the initial SWI, with a left proximal posterior cerebral artery occlusion on a magnetic resonance (MR) angiography and delayed time-to-peak on an MR perfusion performed two hours after symptom onset. No obvious abnormal signals at any intensity were found on the initial diffusion-weighted imaging (DWI). On a follow-up MR image (MRI), an acute ischemic infarction was seen on DWI, which is the same location as the lesion on SWI. The hypointensity on the initial SWI reflects the susceptibility artifact caused by an increased deoxyhemoglobin in the affected tissue and vessels, which reflects the hypoperfusion state due to decreasing arterial flow. It precedes the signal change on DWI that reflects a cytotoxic edema. This case highlights that, in some hyperacute stages of ischemic stroke, hypointensity on an SWI may be a finding before the hyperintensity is seen on a DWI.

Associated Brain Parenchymal Abnormalities in Developmental Venous Anomalies: Evaluation with Susceptibility-weighted MR Imaging

  • Ryu, Hyeon Gyu;Choi, Dae Seob;Cho, Soo Bueum;Shin, Hwa Seon;Choi, Ho Cheol;Jeong, Boseul;Seo, Hyemin;Cho, Jae Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.146-152
    • /
    • 2015
  • Purpose: The purpose of this study was to evaluate the associated brain parenchymal abnormalities of developmental venous anomalies (DVA) with susceptibility-weighted image (SWI). Materials and Methods: Between January 2012 and June 2013, 2356 patients underwent brain MR examinations with contrast enhancement. We retrospectively reviewed their MR examinations and data were collected as per the following criteria: incidence, locations, and associated parenchymal signal abnormalities of DVAs on T2-weighted image, fluid-attenuated inversion recovery (FLAIR), and SWI. Contrast enhanced T1-weighted image was used to diagnose DVA. Results: Of the 2356 patients examined, 57 DVAs were detected in 57 patients (2.4%); 47 (82.4%) were in either lobe of the supratentorial brain, 9 (15.7%) were in the cerebellum, and 1 (1.7%) was in the pons. Of the 57 DVAs identified, 20 (35.1%) had associated parenchymal abnormalities in the drainage area. Among the 20 DVAs which had associated parenchymal abnormalities, 13 showed hemorrhagic foci on SWI, and 7 demonstrated only increased parenchymal signal abnormalities on T2-weighted and FLAIR images. In 5 of the 13 patients (38.5%) who had hemorrhagic foci, the hemorrhagic lesions were demonstrated only on SWI. Conclusion: The overall incidence of DVAs was 2.4%. Parenchymal abnormalities were associated with DVAs in 35.1% of the cases. On SWI, hemorrhage was detected in 22.8% of DVAs. Thus, we conclude that SWI might give a potential for understanding of the pathophysiology of parenchymal abnormalities in DVAs.

Susceptibility Vessel Sign for the Detection of Hyperacute MCA Occlusion: Evaluation with Susceptibility-weighted MR Imaging

  • Lee, Sangmin;Cho, Soo Bueum;Choi, Dae Seob;Park, Sung Eun;Shin, Hwa Seon;Baek, Hye Jin;Choi, Ho Cheol;Kim, Ji-Eun;Choi, Hye Young;Park, Mi Jung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.105-113
    • /
    • 2016
  • Purpose: Susceptibility vessel sign (SVS) on gradient echo image, which is caused by MR signal loss due to arterial thrombosis, has been reported in acute middle cerebral artery (MCA) infarction. However, the reported sensitivity and diagnostic accuracy of SVS have been variable. Susceptibility-weighted imaging (SWI) is a newly developed MR sequence. Recent studies have found that SWI may be useful in the field of cerebrovascular diseases, especially for detecting the presence of prominent veins, microbleeds and the SVS. The purpose of this study was to evaluate the diagnostic values of SWI for the detection of hyperacute MCA occlusion. Materials and Methods: Sixty-nine patients (37 males, 32 females; 46-89 years old [mean, 69.1]) with acute stroke involving the MCA territory underwent MR imaging within 6 hours after the symptom onset. MR examination included T2, FLAIR (fluid-attenuated inversion recovery), DWI, SWI, PWI (perfusion-weighted imaging), contrast-enhanced MR angiography (MRA) and contrast-enhanced T1. Of these patients, 28 patients also underwent digital subtraction angiography (DSA) within 2 hours after MR examination. Presence or absence of SVS on SWI was assessed without knowledge of clinical, DSA and other MR imaging findings. Results: On MRA or DSA, 34 patients (49.3%) showed MCA occlusion. Of these patients, SVS was detected in 30 (88.2%) on SWI. The sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of SWI were 88.2%, 97.1%, 96.8%, 89.5% and 92.8%, respectively. Conclusion: SWI was sensitive, specific and accurate for the detection of hyperacute MCA occlusion.

Findings Regarding an Intracranial Hemorrhage on the Phase Image of a Susceptibility-Weighted Image (SWI), According to the Stage, Location, and Size

  • Lee, Yoon Jung;Lee, Song;Jang, Jinhee;Choi, Hyun Seok;Jung, So Lyung;Ahn, Kook-Jin;Kim, Bum-soo;Lee, Kang Hoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.107-113
    • /
    • 2015
  • Purpose: Susceptibility weighted imaging (SWI) is a new magnetic resonance technique that can exploit the magnetic susceptibility differences of various tissues. Intracranial hemorrhage (ICH) looks a dark blooming on the magnitude images of SWI. However, the pattern of ICH on phase images is not well known. The purpose of this study is to characterize hemorrhagic lesions on the phase images of SWI. Materials and Methods: We retrospectively enrolled patients with ICH, who underwent both SWI and precontrast CT, between 2012 and 2013 (n = 95). An SWI was taken, using the 3-tesla system. A phase map was generated after postprocessing. Cases with an intracranial hemorrhage were reviewed by an experienced neuroradiologist and a trainee radiologist, with 10 years and 3 years of experience, respectively. The types and stages of the hemorrhages were determined in correlation with the precontrast CT, the T1- and T2-weighted images, and the FLAIR images. The size of the hemorrhage was measured by a one- directional axis on a magnitude image of SWI. The phase values of the ICH were qualitatively evaluated: hypo-, iso-, and hyper-intensity. We summarized the imaging features of the intracranial hemorrhage on the phase map of the SWI. Results: Four types of hemorrhage are observed: subdural and epidural; subarachnoid; parenchymal hemorrhage; and microbleed. The stages of the ICH were classified into 4 groups: acute (n = 34); early subacute (n = 11); late subacute (n = 15); chronic (n = 8); stage-unknown microbleeds (n = 27). The acute and early subacute hemorrhage showed heterogeneous mixed hyper-, iso-, and hypo-signal intensity; the late subacute hemorrhage showed homogeneous hyper-intensity, and the chronic hemorrhage showed a shrunken iso-signal intensity with the hyper-signal rim. All acute subarachnoid hemorrhages showed a homogeneous hyper-signal intensity. All parenchymal hemorrhages (> 3 mm) showed a dipole artifact on the phase images; however, microbleeds of less than 3 mm showed no dipole artifact. Larger hematomas showed a heterogeneous mixture of hyper-, iso-, and hypo-signal intensities. Conclusion: The pattern of the phase value of the SWI showed difference, according to the type, stage, and size.

Differentiation of True Recurrence from Delayed Radiation Therapy-related Changes in Primary Brain Tumors Using Diffusion-weighted Imaging, Dynamic Susceptibility Contrast Perfusion Imaging, and Susceptibility-weighted Imaging (확산강조영상, 역동적조영관류영상, 자화율강조영상을 이용한 원발성 뇌종양환자에서의 종양재발과 지연성 방사선치료연관변화의 감별)

  • Kim, Dong Hyeon;Choi, Seung Hong;Ryoo, Inseon;Yoon, Tae Jin;Kim, Tae Min;Lee, Se-Hoon;Park, Chul-Kee;Kim, Ji-Hoon;Sohn, Chul-Ho;Park, Sung-Hye;Kim, Il Han
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.2
    • /
    • pp.120-132
    • /
    • 2014
  • Purpose : To compare dynamic susceptibility contrast imaging, diffusion-weighted imaging, and susceptibility-weighted imaging (SWI) for the differentiation of tumor recurrence and delayed radiation therapy (RT)-related changes in patients treated with RT for primary brain tumors. Materials and Methods: We enrolled 24 patients treated with RT for various primary brain tumors, who showed newly appearing enhancing lesions more than one year after completion of RT on follow-up MRI. The enhancing-lesions were confirmed as recurrences (n=14) or RT-changes (n=10). We calculated the mean values of normalized cerebral blood volume (nCBV), apparent diffusion coefficient (ADC), and proportion of dark signal intensity on SWI (proSWI) for the enhancing-lesions. All the values between the two groups were compared using t-test. A multivariable logistic regression model was used to determine the best predictor of differential diagnosis. The cutoff value of the best predictor obtained from receiver-operating characteristic curve analysis was applied to calculate the sensitivity, specificity, and accuracy for the diagnosis. Results: The mean nCBV value was significantly higher in the recurrence group than in the RT-change group (P=.004), and the mean proSWI was significantly lower in the recurrence group (P<.001). However, no significant difference was observed in the mean ADC values between the two groups. A multivariable logistic regression analysis showed that proSWI was the only independent variable for the differentiation; the sensitivity, specificity, and accuracy were 78.6% (11 of 14), 100% (10 of 10), and 87.5% (21 of 24), respectively. Conclusion: The proSWI was the most promising parameter for the differentiation of newly developed enhancing-lesions more than one year after RT completion in brain tumor patients.

Clinical Applications of Neuroimaging with Susceptibility Weighted Imaging: Review Article (SWI의 신경영상분야의 임상적 이용)

  • Roh, Keuntak;Kang, Hyunkoo;Kim, Injoong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.4
    • /
    • pp.290-302
    • /
    • 2014
  • Purpose : Susceptibility-weighted magnetic resonance (MR) sequence is three-dimensional (3D), spoiled gradient-echo pulse sequences that provide a high sensitivity for the detection of blood degradation products, calcifications, and iron deposits. This pictorial review is aimed at illustrating and discussing its main clinical applications. Materials and Methods: SWI is based on high-resolution, 3D, fully velocity-compensated gradient-echo sequences using both magnitude and phase images. To enhance the visibility of the venous structures, the magnitude images are multiplied with a phase mask generated from the filtered phase data, which are displayed at best after post-processing of the 3D dataset with the minimal intensity projection algorithm. A total of 200 patients underwent MR examinations that included SWI on a 3 tesla MR imager were enrolled. Results: SWI is very useful in detecting multiple brain disorders. Among the 200 patients, 80 showed developmental venous anomaly, 22 showed cavernous malformation, 12 showed calcifications in various conditions, 21 showed cerebrovascular accident with susceptibility vessel sign or microbleeds, 52 showed brain tumors, 2 showed diffuse axonal injury, 3 showed arteriovenous malformation, 5 showed dural arteriovenous fistula, 1 showed moyamoya disease, and 2 showed Parkinson's disease. Conclusion: SWI is useful in detecting occult low flow vascular lesions, calcification and microbleed and characterising diverse brain disorders.

Comparison of Single- and Multi-Echo Susceptibility-Weighted Imaging in Detecting Cerebral Arteriovenous Shunts: A Preliminary Study (뇌동정맥단락 진단에서의 단일 에코 자화율 강조영상과 다중 에코 자화율 강조영상의 비교: 예비 연구)

  • Seung Wan Han;Jae Ho Shin;Yon Kwon Ihn;Seung Ho Yang;Jae Hoon Sung
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.226-239
    • /
    • 2023
  • Purpose To compare the sensitivities of T2-weighted image (T2WI) and susceptibility-weighted imaging (SWI) in detecting cerebral arteriovenous fistula (AVF), cerebral arteriovenous malformation (AVM), and carotid-cavernous sinus fistula (CCF), and to qualitatively evaluate single-echo SWI (s-SWI) and multi-echo SWI (m-SWI) in characterizing vascular lesions. Materials and Methods From January 2016 to December 2021, cerebral angiography-proven lesions were recruited. The sensitivities of T2WI and SWI in detecting vascular lesions were compared using McNemar's test. Qualitative evaluations of s-SWI and m-SWI were categorized to be of poor, average, or good quality and compared using Fisher's exact test. Results A total of 24 patients (mean age: 61 years, 12 female, and 12 male) were enrolled. Twenty patients underwent s-SWI or m-SWI, and four patients underwent both. AVF, AVM, and CCF were diagnosed in 10, 11, and 3 patients, respectively. SWI demonstrated higher sensitivity compared to that of T2WI (82.1% vs. 53.6%, p = 0.013). m-SWI showed better image quality compared to that of s-SWI (good quality, 83.3% vs. 25.0%, p = 0.009). Conclusion SWI demonstrated a higher sensitivity for detecting cerebral arteriovenous shunts compared to that of T2WI. m-SWI exhibited better image quality compared to that of s-SWI in characterizing vascular lesions.

Diagnostic Value of Susceptibility-Weighted MRI in Differentiating Cerebellopontine Angle Schwannoma from Meningioma

  • Seo, Minkook;Choi, Yangsean;Lee, Song;Kim, Bum-soo;Jang, Jinhee;Shin, Na-Young;Jung, So-Lyung;Ahn, Kook-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.1
    • /
    • pp.38-45
    • /
    • 2020
  • Background: Differentiation of cerebellopontine angle (CPA) schwannoma from meningioma is often a difficult process to identify. Purpose: To identify imaging features for distinguishing CPA schwannoma from meningioma and to investigate the usefulness of susceptibility-weighted imaging (SWI) in differentiating them. Materials and Methods: Between March 2010 and January 2015, this study pathologically confirmed 11 meningiomas and 20 schwannomas involving CPA with preoperative SWI were retrospectively reviewed. Generally, the following MRI features were evaluated: 1) maximal diameter on axial image, 2) angle between tumor border and adjacent petrous bone, 3) presence of intratumoral dark signal intensity on SWI, 4) tumor consistency, 5) blood-fluid level, 6) involvement of internal auditory canal (IAC), 7) dural tail, and 8) involvement of adjacent intracranial space. On CT, 1) presence of dilatation of IAC, 2) intratumoral calcification, and 3) adjacent hyperostosis were evaluated. All features were compared using Chi-squared tests and Fisher's exact tests. The univariate and multivariate logistic regression analysis were performed to identify imaging features that differentiate both tumors. Results: The results noted that schwannomas more frequently demonstrated dark spots on SWI (P = 0.025), cystic consistency (P = 0.034), and globular angle (P = 0.008); schwannomas showed more dilatation of internal auditory meatus and lack of calcification (P = 0.008 and P = 0.02, respectively). However, it was shown that dural tail was more common in meningiomas (P < 0.007). In general, dark spots on SWI and dural tail remained significant in multivariate analysis (P = 0.037 and P = 0.012, respectively). In this case, the combination of two features showed a sensitivity and specificity of 80% and 100% respectively, with an area under the receiver operating characteristic curve of 0.9. Conclusion: In conclusion, dark spots on SWI were found to be helpful in differentiating CPA schwannoma from meningioma. It is noted that combining dural tail with dark spots on SWI yielded strong diagnostic value in differentiating both tumors.

Susceptibility Weighted Imaging of the Cervical Spinal Cord with Compensation of Respiratory-Induced Artifact

  • Lee, Hongpyo;Nam, Yoonho;Gho, Sung-Min;Han, Dongyeob;Kim, Eung Yeop;Lee, Sheen-Woo;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.4
    • /
    • pp.209-217
    • /
    • 2018
  • Purpose: The objective of this study was to obtain improved susceptibility weighted images (SWI) of the cervical spinal cord using respiratory-induced artifact compensation. Materials and Methods: The artifact from $B_0$ fluctuations by respiration could be compensated using a double navigator echo approach. The two navigators were inserted in an SWI sequence before and after the image readouts. The $B_0$ fluctuation was measured by each navigator echoes, and the inverse of the fluctuation was applied to eliminate the artifact from fluctuation. The degree of compensation was quantified using a quality index (QI) term for compensated imaging using each navigator. Also, the effect of compensation was analyzed according to the position of the spinal cord using QI values. Results: Compensation using navigator echo gave the improved visualization of SWI in cervical spinal cord compared to non-compensated images. Before compensation, images were influenced by artificial noise from motion in both the superior (QI = 0.031) and inferior (QI = 0.043) regions. In most parts of the superior regions, the second navigator resulted in better quality (QI = 0.024, P < 0.01) compared to the first navigator, but in the inferior regions the first navigator showed better quality (QI = 0.033, P < 0.01) after correction. Conclusion: Motion compensation using a double navigator method can increase the improvement of the SWI in the cervical spinal cord. The proposed method makes SWI a useful tool for the diagnosis of spinal cord injury by reducing respiratory-induced artifact.

Effective Gray-white Matter Segmentation Method based on Physical Contrast Enhancement in an MR Brain Images (MR 뇌 영상에서 물리기반 영상 개선 작업을 통한 효율적인 회백질 경계 검출 방법)

  • Eun, Sung-Jong;Whangbo, Taeg-Keun
    • Journal of Digital Contents Society
    • /
    • v.14 no.2
    • /
    • pp.275-282
    • /
    • 2013
  • In medical image processing field, object recognition is usually carried out by computerized processing of various input information such as brightness, shape, and pattern. If the information mentioned does not make sense, however, many limitations could occur with object recognition during computer processing. Therefore, this paper suggests effective object recognition method based on the magnetic resonance (MR) theory to resolve the basic limitations in computer processing. We propose the efficient method of robust gray-white matter segmentation by texture analysis through the Susceptibility Weighted Imaging (SWI) for contrast enhancement. As a result, an average area difference of 5.2%, which was higher than the accuracy of conventional region segmentation algorithm, was obtained.