DOI QR코드

DOI QR Code

Comparison of Single- and Multi-Echo Susceptibility-Weighted Imaging in Detecting Cerebral Arteriovenous Shunts: A Preliminary Study

뇌동정맥단락 진단에서의 단일 에코 자화율 강조영상과 다중 에코 자화율 강조영상의 비교: 예비 연구

  • Seung Wan Han (Department of Radiology, St. Vincent's Hospital, The Catholic University of Korea) ;
  • Jae Ho Shin (Department of Radiology, St. Vincent's Hospital, The Catholic University of Korea) ;
  • Yon Kwon Ihn (Department of Radiology, St. Vincent's Hospital, The Catholic University of Korea) ;
  • Seung Ho Yang (Department of Neurosurgery, St. Vincent's Hospital, The Catholic University of Korea) ;
  • Jae Hoon Sung (Department of Neurosurgery, St. Vincent's Hospital, The Catholic University of Korea)
  • 한승완 (가톨릭대학교 의과대학 성빈센트병원 영상의학과) ;
  • 신재호 (가톨릭대학교 의과대학 성빈센트병원 영상의학과) ;
  • 인연권 (가톨릭대학교 의과대학 성빈센트병원 영상의학과) ;
  • 양승호 (가톨릭대학교 의과대학 성빈센트병원 신경외과) ;
  • 성재훈 (가톨릭대학교 의과대학 성빈센트병원 신경외과)
  • Received : 2022.05.30
  • Accepted : 2022.07.28
  • Published : 2023.01.01

Abstract

Purpose To compare the sensitivities of T2-weighted image (T2WI) and susceptibility-weighted imaging (SWI) in detecting cerebral arteriovenous fistula (AVF), cerebral arteriovenous malformation (AVM), and carotid-cavernous sinus fistula (CCF), and to qualitatively evaluate single-echo SWI (s-SWI) and multi-echo SWI (m-SWI) in characterizing vascular lesions. Materials and Methods From January 2016 to December 2021, cerebral angiography-proven lesions were recruited. The sensitivities of T2WI and SWI in detecting vascular lesions were compared using McNemar's test. Qualitative evaluations of s-SWI and m-SWI were categorized to be of poor, average, or good quality and compared using Fisher's exact test. Results A total of 24 patients (mean age: 61 years, 12 female, and 12 male) were enrolled. Twenty patients underwent s-SWI or m-SWI, and four patients underwent both. AVF, AVM, and CCF were diagnosed in 10, 11, and 3 patients, respectively. SWI demonstrated higher sensitivity compared to that of T2WI (82.1% vs. 53.6%, p = 0.013). m-SWI showed better image quality compared to that of s-SWI (good quality, 83.3% vs. 25.0%, p = 0.009). Conclusion SWI demonstrated a higher sensitivity for detecting cerebral arteriovenous shunts compared to that of T2WI. m-SWI exhibited better image quality compared to that of s-SWI in characterizing vascular lesions.

목적 뇌동정맥루(arteriovenous fistula; 이하 AVF), 뇌동정맥기형(arteriovenous malformation; 이하 AVM), 경동맥해면정맥동루(carotid-cavernous sinus fistula; 이하 CCF) 등 뇌동정맥단락을 진단하는 데 있어서, T2 강조영상(T2-weighted imaging; 이하 T2WI)과 자화율 강조영상(susceptibility-weighted imaging; 이하 SWI)의 민감도를 비교하고, 단일 에코(single-echo) SWI(이하 s-SWI)와 다중 에코(multi-echo) SWI (이하 m-SWI)의 전반적인 영상 질을 비교하고자 하였다. 대상과 방법 2016년부터 2021년까지 뇌혈관조영술로 입증된 뇌동정맥단락을 조사하였다. 뇌동정맥단락에 대한 T2WI와 SWI의 민감도를 McNemar's Test를 이용하여 비교하였다. s-SWI와 m-SWI의 영상 질을 나쁨, 보통, 좋음으로 분류하고 Fisher's exact test를 이용하여 그 비율을 비교하였다. 결과 총 24명의 환자(중위 연령: 61세, 여성: 12명, 남성: 12명)가 연구에 포함되었다. 그중 4명은 s-SWI와 m-SWI 두 가지의 SWI로, 나머지 20명은 이 중 한 가지의 SWI로 검사하였다. 10명은 AVF, 11명은 AVM, 3명은 CCF로 진단되었고, 이와 같은 뇌동정맥단락에 대해, SWI는 T2WI 보다 유의하게 높은 민감도를 보였다(82.1% vs. 53.6%, p = 0.013). m-SWI는 s-SWI 보다 좋은 영상 질의 비율이 유의하게 높았다(83.3% vs. 25.0%, p = 0.009). 결론 SWI는 T2WI 보다 뇌동정맥단락을 더 민감하게 진단해 낼 수 있었으며, m-SWI는 s-SWI보다 혈관질환을 평가하는데 더 좋은 영상 질을 보였다.

Keywords

References

  1. Abecassis IJ, Xu DS, Batjer HH, Bendok BR. Natural history of brain arteriovenous malformations: a systematic review. Neurosurg Focus 2014;37:E7 
  2. Gandhi D, Chen J, Pearl M, Huang J, Gemmete JJ, Kathuria S. Intracranial dural arteriovenous fistulas: classification, imaging findings, and treatment. AJNR Am J Neuroradiol 2012;33:1007-1013 
  3. Reynolds MR, Lanzino G, Zipfel GJ. Intracranial dural arteriovenous fistulae. Stroke 2017;48:1424-1431 
  4. Ellis JA, Goldstein H, Connolly ES Jr, Meyers PM. Carotid-cavernous fistulas. Neurosurg Focus 2012;32:E9 
  5. Hillman J. Population-based analysis of arteriovenous malformation treatment. J Neurosurg 2001;95:633-637 
  6. Chen CJ, Ding D, Derdeyn CP, Lanzino G, Friedlander RM, Southerland AM, et al. Brain arteriovenous malformations: a review of natural history, pathobiology, and interventions. Neurology 2020;95:917-927 
  7. Hodel J, Leclerc X, Kalsoum E, Zuber M, Tamazyan R, Benadjaoud MA, et al. Intracranial arteriovenous shunting: detection with arterial spin-labeling and susceptibility-weighted imaging combined. AJNR Am J Neuroradiol 2017;38:71-76 
  8. Ozpinar A, Mendez G, Abla AA. Epidemiology, genetics, pathophysiology, and prognostic classifications of cerebral arteriovenous malformations. Handb Clin Neurol 2017;143:5-13 
  9. Gross BA, Frerichs KU, Du R. Sensitivity of CT angiography, T2-weighted MRI, and magnetic resonance angiography in detecting cerebral arteriovenous malformations and associated aneurysms. J Clin Neurosci 2012;19:1093-1095 
  10. Essig M, Wenz F, Schoenberg SO, Debus J, Knopp MV, Van Kaick G. Arteriovenous malformations: assessment of gliotic and ischemic changes with fluid-attenuated inversion-recovery MRI. Invest Radiol 2000;35:689-694 
  11. Kwon BJ, Han MH, Kang HS, Chang KH. MR imaging findings of intracranial dural arteriovenous fistulas: relations with venous drainage patterns. AJNR Am J Neuroradiol 2005;26:2500-2507 
  12. Schneider TM, Mohlenbruch M, Denoix M, Ladd ME, Bendszus M, Heiland S, et al. Susceptibility-based characterization of cerebral arteriovenous malformations. Invest Radiol 2020;55:702-710 
  13. Finitsis S, Anxionnat R, Gory B, Planel S, Liao L, Bracard S. Susceptibility-weighted angiography for the follow-up of brain arteriovenous malformations treated with stereotactic radiosurgery. AJNR Am J Neuroradiol 2019;40:792-797 
  14. Jagadeesan BD, Delgado Almandoz JE, Moran CJ, Benzinger TL. Accuracy of susceptibility-weighted imaging for the detection of arteriovenous shunting in vascular malformations of the brain. Stroke 2011;42:87-92 
  15. Heit JJ, Thakur NH, Iv M, Fischbein NJ, Wintermark M, Dodd RL, et al. Arterial-spin labeling MRI identifies residual cerebral arteriovenous malformation following stereotactic radiosurgery treatment. J Neuroradiol 2020;47:13-19 
  16. Radbruch A, Mucke J, Schweser F, Deistung A, Ringleb PA, Ziener CH, et al. Comparison of susceptibility weighted imaging and TOF-angiography for the detection of Thrombi in acute stroke. PLoS One 2013;8:e63459 
  17. Boeckh-Behrens T, Lutz J, Lummel N, Burke M, Wesemann T, Schopf V, et al. Susceptibility-weighted angiography (SWAN) of cerebral veins and arteries compared to TOF-MRA. Eur J Radiol 2012;81:1238-1245 
  18. Denk C, Rauscher A. Susceptibility weighted imaging with multiple echoes. J Magn Reson Imaging 2010;31:185-191 
  19. Barrow DL, Spector RH, Braun IF, Landman JA, Tindall SC, Tindall GT. Classification and treatment of spontaneous carotid-cavernous sinus fistulas. J Neurosurg 1985;62:248-256 
  20. Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg 1986;65:476-483 
  21. Kim D, Choi YJ, Song Y, Chung SR, Baek JH, Lee JH. Thin-section MR imaging for carotid cavernous fistula. AJNR Am J Neuroradiol 2020;41:1599-1605 
  22. Wen HY, Chen HC, Yang ST. Risk factors of aggressive clinical presentation in patients with angiographically aggressive cranial dural arteriovenous fistulas. J Clin Med 2021;10:5835 
  23. Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med 2005;37:360-363 
  24. Miller TR, Gandhi D. Intracranial dural arteriovenous fistulae: clinical presentation and management strategies. Stroke 2015;46:2017-2025 
  25. Miyasaka T, Taoka T, Nakagawa H, Wada T, Takayama K, Myochin K, et al. Application of susceptibility weighted imaging (SWI) for evaluation of draining veins of arteriovenous malformation: utility of magnitude images. Neuroradiology 2012;54:1221-1227 
  26. Gasparotti R, Pinelli L, Liserre R. New MR sequences in daily practice: susceptibility weighted imaging. A pictorial essay. Insights Imaging 2011;2:335-347 
  27. Deistung A, Dittrich E, Sedlacik J, Rauscher A, Reichenbach JR. ToF-SWI: simultaneous time of flight and fully flow compensated susceptibility weighted imaging. J Magn Reson Imaging 2009;29:1478-1484 
  28. Amukotuwa SA, Yu C, Zaharchuk G. 3D pseudocontinuous arterial spin labeling in routine clinical practice: a review of clinically significant artifacts. J Magn Reson Imaging 2016;43:11-27 
  29. Lindner T, Jansen O, Helle M. Time-resolved high-resolution angiography combining arterial spin labeling and time-of-flight imaging. Appl Magn Reson 2020;52:201-210 
  30. Amukotuwa SA, Marks MP, Zaharchuk G, Calamante F, Bammer R, Fischbein N. Arterial spin-labeling improves detection of intracranial dural arteriovenous fistulas with MRI. AJNR Am J Neuroradiol 2018;39:669-677