• 제목/요약/키워드: Survival proteins

검색결과 406건 처리시간 0.027초

CLP, Dhn5 유전자의 도입에 의한 고비사막 자생식물 Artemisia adamsii의 내건성 및 내동성 증진 (Transformation of Artemisia adamsii, Endemic to a Gobi Desert, with CLP, Dhn5 to Enhance Environmental Stress Tolerance)

  • 한규현;황철호
    • Journal of Plant Biotechnology
    • /
    • 제30권4호
    • /
    • pp.315-321
    • /
    • 2003
  • 고비사막 접경지역의 식물인 Artermisia adamsii의 내건성 및 내동성 증진을 위해 조직배양과 CLP및 Dhn5유전자의 형질전환을 수행하였다. 다양한 호르몬 농도 조건에서의 성장을 확인한 결과, 0.05mg/L의 NAA와 0.5mg/L의 BAP조건과 0.1mg/L의 NAA와 0.5mg/L의 BAP가 포함된 배지의 암조건 하에서 최적의 캘러스 생장을 확인하였으며 유전자 도입 및 유전자의 발현이 확인된 캘러스가 세포 수준에서도 내건성 및 내동성이 증진되었음을 확인하였다. 그러나 Atremisia속 다른 식물과 다르게 조직절편에서 직접 기관분화를 유도하거나 캘러스를 통한 식물체 재생에 어려움이 있어 식물체 수준에서 형질전환에 따른 환경스트레스 내성의 증진을 확인하지 못하고 있다. 앞으로 진행될 A. adamsii의 식물체 재생에 대한 연구를 통해 내동성 및 내건성이 증진된 식물체를 육성하여 고비사막 지역적응력을 조사할 예정이다.

한국 여성의 Lactadherin 유전자 Cloning과 발현 연구 (Cloning and Expression of Lactadherin Gene from Korean Women)

  • 염행철
    • 한국발생생물학회지:발생과생식
    • /
    • 제11권3호
    • /
    • pp.253-261
    • /
    • 2007
  • Lactadherin은 모유의 유지방구막의 당단백질의 하나로 mucin, butyrophilin과 결합된 복합체이다. 특히 모유중의 mucin과 lactadherin은 출생 직후 면역력이 약한 유아를 병균의 침입으로부터 효율적으로 방어하여 초기 유아의 생존과 성장 및 발달에 매우 중요한 역할을 수행한다. Lactadherin은 유아 설사의 원인이 되는 rotavirus의 번식과 성장을 억제한다. 아울러 이 단백질은 새로운 혈관의 형성을 촉진하는 주요한 단백질로 알려져 있으며, 이 단백질의 결핍이 치매의 발생과 관련되는 것으로 보고되고 있다. 본 연구는 이처럼 중요성이 강조되는 lactadherin에 대한 생화학적 및 생리학적인 연구를 하기 위한 기초연구를 진행하였다. 한국 여성의 유선조직에서 mRNA를 분리하였고, 1.2 kb lactadherin cDNA 유전자를 cloning하여 염기서열과 아미노산 배열을 결정하였다. 이 cDNA를 pET vector에 삽입하여 E. coli에서 43 kD 단백질을 발현시켰으며 Western blot으로 확인하였으며, 이 단백질을 정제하여 토끼에서 항체를 생산하여, 한국 여성의 모유에서 발현되는 70, 55, 46, 30 kD의 band를 확인하였다. 아울러 백인 여성의 lactadherin 유전자와 한국 여성의 정상 및 유방암 조직의 유전자 비교에서 다양한 SNP가 관찰되었고 변이의 다형성이 관찰되었다.

  • PDF

Cloning, expression, and activity of type IV antifreeze protein from cultured subtropical olive flounder (Paralichthys olivaceus)

  • Lee, Jong Kyu;Kim, Hak Jun
    • Fisheries and Aquatic Sciences
    • /
    • 제19권8호
    • /
    • pp.33.1-33.7
    • /
    • 2016
  • Antifreeze proteins (AFPs) lower the freezing point but not the melting point of aqueous solutions by inhibiting the growth of ice crystals via an adsorption-inhibition mechanism. However, the function of type IV AFP (AFP IV) is questionable, as its antifreeze activity is on the verge of detectable limits, its physiological concentration in adult fish blood is too low to function as a biological antifreeze, and its homologues are present even in fish from tropic oceans as well as freshwater. Therefore, we speculated that AFP IV may have gained antifreeze activity not by selective pressure but by chance. To test this hypothesis, we cloned, expressed, and assayed AFP IV from cultured subtropical olive flounder (Paralichthys olivaceus), which do not require antifreeze protein for survival. Among the identified expressed sequence tags of the flounder liver sample, a 5'-deleted complementary DNA (cDNA) sequence similar to the afp4 gene of the longhorn sculpin was identified, and its full-length cDNA and genome structure were examined. The deduced amino acid sequence of flounder AFP IV shared 55, 53, 52, and 49 % identity with those of Pleuragramma antarcticum, Myoxocephalus octodecemspinosus, Myoxocephalus scorpius, and Notothenia coriiceps, respectively. Furthermore, the genomic structure of this gene was conserved with those of other known AFP IVs. Notably, the recombinant AFP IV showed a weak but distinct thermal hysteresis of $0.07{\pm}0.01^{\circ}C$ at the concentration of 0.5 mg/mL, and ice crystals in an AFP IV solution grew star-shaped, which are very similar to those obtained from other polar AFP IVs. Taken together, our results do not support the hypothesis of evolution of AFP IV by selective pressure, suggesting that the antifreeze activity of AFP IV may have been gained by chance.

NF-κB 조절을 통한 오매추출물의 항염효과 및 작용기작에 관한 연구 (Study on the Anti-inflammatory Effect and Mechanism of Prunus mume Extract Regarding NF-κB)

  • 서원상;오한나;박우정;엄상용;이대우;강상모
    • KSBB Journal
    • /
    • 제29권1호
    • /
    • pp.50-57
    • /
    • 2014
  • NF-${\kappa}B$ is a transcriptional factor which is involved in many biological processes including immunity, inflammation, and cell survival. Many investigators studied on the mechanism involved in activation of NF-${\kappa}B$ signalling pathway via ubiquitination and degradation of $I{\kappa}B$ regarding skin disease. Some specific molecules including Akt, MEK, p38 MAP Kinase, Stat3, et al. represent convergence points and key regulatory proteins in signaling pathways controlling cellular events such as growth and differentiation, energy homeostasis, and the response to stress and inflammation. Ultraviolet (UV) irradiation has many adverse effects on skin, including inflammation, alteration in the extracellular matrix, cellular senescence, apoptosis and skin cancer. Prunus mume, a naturally derived plant extract, has beneficial biological activities as blood fluidity improvement, anti-fatigue action, antioxidative and free radical scavenging activities, inhibiting the motility of Helicobacter pyolri. Previous reports on various beneficial function prompted us to investigate UVB-induced or other immunostimulated biological marker regarding P. mume extract. P. mume extract suppresses UVB-induced cyclooxygenase-2 (COX-2) expression in mouse skin epidermal JB6 P+ cells. The activation of activator protein-1 and nuclear factor-${\kappa}B$ induced by UVB was dose-dependently inhibited by P. mume extract treatment. This results suggest that P. mume extracts might be used as a potential agents for protection of inflammation or UVB induced skin damage.

Dual Inhibition of PI3K/Akt/mTOR Pathway and Role of Autophagy in Non-Small Cell Lung Cancer Cells

  • Jeong, Eun-Hui;Choi, Hyeong-Sim;Lee, Tae-Gul;Kim, Hye-Ryoun;Kim, Cheol-Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • 제72권4호
    • /
    • pp.343-351
    • /
    • 2012
  • Background: The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling axis has emerged as a novel target for cancer therapy. Agents that inhibit this pathway are currently under development for lung cancer treatment. In the present study, we have tested whether dual inhibition of PI3K/Akt/mTOR signaling can lead to enahnced antitumor effects. We have also examined the role of autophagy during this process. Methods: We analyzed the combination effect of the mTOR inhibitor, temsirolimus, and the Akt inhibitor, GSK690693, on the survival of NCI-H460 and A549 non-small cell lung cancer cells. Cell proliferation was determined by MTT assay and apoptosis induction was evaluated by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Autophagy induction was also evaluated by acridine orange staining. Changes of apoptosis or autophagy-related proteins were evaluated by western blot analysis. Results: Combination treatment with temsirolimus and GSK690693 caused synergistically increased cell death in NCI-H460 and A549 cells. This was attributable to increased induction of apoptosis. Caspase 3 activation and poly(ADP-ribose) polymerase cleavage accompanied these findings. Autophagy also increased and inhibition of autophagy resulted in increased cell death, suggesting its cytoprotective role during this process. Conclusion: Taken together, our results suggest that the combination of temsirolimus and GSK690693 could be a novel strategy for lung cancer therapy. Inhibition of autophagy could also be a promising method of enhancing the combination effect of these drugs.

Antiapoptotic Effect of Aurintricarboxylic Acid; Extracellular Action versus Inhibition of Cytosolic Protein Tyrosine Phosphatases

  • Lee, Dong-Yoon;Kim, Mee-Kyung;Kim, Mi-Jeong;Bhattarai, Bharatraj;Kafle, Bhooshan;Lee, Keun-Hyeung;Kang, Jae-Seung;Cho, Hyeong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권2호
    • /
    • pp.342-346
    • /
    • 2008
  • Aurintricarboxylic acid (ATA) prevents apoptosis in a wide range of cell types, including PC12 cells. ATA is known to increase the phosphorylation level of IGF-1 receptor (IGF-1R) and downstream signaling proteins. ATA can translocate across the plasma membrane of PC12 cells and inhibit protein tyrosine phosphatases (PTPs) and, therefore, it is not clear whether ATA exerted its antiapoptotic effect through activation of IGF-1R or by inhibition of cytosolic PTPs. When PC12 cells, deprived of serum, were treated with Fab fragment of anti-IGF-1R antibody to prevent the binding of ATA to the extracellular domain of IGF-1R, ATA was found to penetrate into the cytosolic space of the cells. Under these conditions, the survival-promoting effects of ATA were abolished, and the increase of phosphorylation and characteristic cleavage of IGF-1R were not observed. These results indicate that the antiapoptotic effect of ATA in PC12 cells is due to the binding of ATA to the extracellular domain of IGF-1R and subsequent activation of the IGF-1R, not inhibition of cytosolic PTP(s).

Regulation of BAD Protein by PKA, PKCδ and Phosphatases in Adult Rat Cardiac Myocytes Subjected to Oxidative Stress

  • Cieslak, Danuta;Lazou, Antigone
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.224-231
    • /
    • 2007
  • $H_2O_2$, as an example of oxidative stress, induces cardiac myocyte apoptosis. Bcl-2 family proteins are key regulators of the apoptotic response while their functions can be regulated by post-translational modifications including phosphorylation, dimerization or proteolytic cleavage. In this study, we examined the role of various protein kinases in regulating total BAD protein levels in adult rat cardiac myocytes undergoing apoptosis. Stimulation with 0.1 mM $H_2O_2$, which induces apoptosis, resulted in a marked down-regulation of BAD protein, which is attributed to cleavage by caspases since it can be restored in the presence of a general caspase inhibitor. Inhibition of PKC, p38-MAPK, ERK1/2 and PI-3-K did not influence the reduced BAD protein levels observed after stimulation with $H_2O_2$. On the contrary, inhibition of PKA or specifically $PKC{\delta}$ resulted in up-regulation of BAD. Decreased caspase 3 activity was observed in $H_2O_2$ treated cells after inhibition of PKA or $PKC{\delta}$ whereas inhibition of PKA also resulted in improved cell survival. Furthermore, addition of okadaic acid to inhibit selected phosphatases resulted in enhanced BAD cleavage. These data suggest that, during oxidative stress-induced cardiac myocyte apoptosis, there is a caspase-dependent down-regulation of BAD protein, which seems to be regulated by coordinated action of PKA, $PKC{\delta}$ and phosphatases.

PRP4 Kinase Domain Loss Nullifies Drug Resistance and Epithelial-Mesenchymal Transition in Human Colorectal Carcinoma Cells

  • Ahmed, Muhammad Bilal;Islam, Salman Ul;Sonn, Jong Kyung;Lee, Young Sup
    • Molecules and Cells
    • /
    • 제43권7호
    • /
    • pp.662-670
    • /
    • 2020
  • We have investigated the involvement of the pre-mRNA processing factor 4B (PRP4) kinase domain in mediating drug resistance. HCT116 cells were treated with curcumin, and apoptosis was assessed based on flow cytometry and the generation of reactive oxygen species (ROS). Cells were then transfected with PRP4 or pre-mRNA-processing-splicing factor 8 (PRP8), and drug resistance was analyzed both in vitro and in vivo. Furthermore, we deleted the kinase domain in PRP4 using Gateway™ technology. Curcumin induced cell death through the production of ROS and decreased the activation of survival signals, but PRP4 overexpression reversed the curcumin-induced oxidative stress and apoptosis. PRP8 failed to reverse the curcumin-induced apoptosis in the HCT116 colon cancer cell line. In xenograft mouse model experiments, curcumin effectively reduced tumour size whereas PRP4 conferred resistance to curcumin, which was evident from increasing tumour size, while PRP8 failed to regulate the curcumin action. PRP4 overexpression altered the morphology, rearranged the actin cytoskeleton, triggered epithelial-mesenchymal transition (EMT), and decreased the invasiveness of HCT116 cells. The loss of E-cadherin, a hallmark of EMT, was observed in HCT116 cells overexpressing PRP4. Moreover, we observed that the EMT-inducing potential of PRP4 was aborted after the deletion of its kinase domain. Collectively, our investigations suggest that the PRP4 kinase domain is responsible for promoting drug resistance to curcumin by inducing EMT. Further evaluation of PRP4-induced inhibition of cell death and PRP4 kinase domain interactions with various other proteins might lead to the development of novel approaches for overcoming drug resistance in patients with colon cancer.

Bee Venom (Apis Mellifera) an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains - Bee Venom an Effective Potential for Bacteria-

  • Zolfagharian, Hossein;Mohajeri, Mohammad;Babaie, Mahdi
    • 대한약침학회지
    • /
    • 제19권3호
    • /
    • pp.225-230
    • /
    • 2016
  • Objectives: Mellitine, a major component of bee venom (BV, Apis mellifera), is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has been reported to have antibacterial properties. The aim of this study was to evaluate the antibacterial activity of BV against selected gram positive and gram negative bacterial strains of medical importance. Methods: This investigation was set up to evaluate the antibacterial activity of BV against six grams positive and gram negative bacteria, including Staphylococcus aureus (S. aureus), Salmonella typhimurium, Escherichia coli (E. coli) O157:H7, Pseudomonas aeruginosa, Burkholderia mallei and Burkholderia pseudomallei. Three concentrations of crude BV and standard antibiotic (gentamicin) disks as positive controls were tested by using the disc diffusion method. Results: BV was found to have a significant antibacterial effect against E. coli, S. aureus, and Salmonella typhyimurium in all three concentrations tested. However, BV had no noticeable effect on other tested bacteria for any of the three doses tested. Conclusion: The results of the current study indicate that BV inhibits the growth and survival of bacterial strains and that BV can be used as a complementary antimicrobial agent against pathogenic bacteria. BV lacked the effective proteins necessary for it to exhibit antibacterial activity for some specific strains while being very effective against other specific strains. Thus, one may conclude, that Apis mellifera venom may have a specific mechanism that allows it to have an antibacterial effect on certain susceptible bacteria, but that mechanism is not well understood.

Expression of the Galactokinase Gene (gaIK) from Lactococcus lactis asp. lactis ATCC7962 in Escherichia coil

  • Lee, Hyong-Joo;Lee, Jung-Min;Park, Jae-Yeon;Lee, Jong-Hoon;Kim, Jeong-Hwon;Chang, Hea-Choon;Chung, Dae-Kyun;Kim, Somi-Cho
    • Journal of Microbiology
    • /
    • 제40권2호
    • /
    • pp.156-160
    • /
    • 2002
  • The whole gal/lae operon genes of Lactococcus lactis ssp. lactis 7962 were reported as follows: galA-galM-galK-galT-lacA -lacZ-galE. The galK gene encoding a galactokinase involved in one of the Leloir pathways for galactose metabolism was found to be 1,197 bp in length and encodes a protein of 43,822 Da calculated molecular mass. The deduced amino acid sequence showed over 50% homology with GaIK proteins from several other lactic acid bacteria. The galK gene was expressed in E. coli and the product was identified as a 43 kDa protein which corresponds to the estimated size from the DNA sequence. The galactokinase activity of recombinant 5. coli was about 8 times greater against that of the host strain and more than 3 times higher than the induced L. lactis 7962.