• Title/Summary/Keyword: Surveillance robot

Search Result 103, Processing Time 0.024 seconds

A Design of Intelligent Surveillance System Based on Mobile Robot and Network Camera (모바일 로봇 및 네트워크 카메라 기반 지능형 감시 시스템 설계)

  • Park, Jung-Hyun;Lee, Min-Young;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.476-481
    • /
    • 2008
  • The necessity of intelligent surveillance system is gradually considered seriously from the space where the security is important. From this paper will load Network Camera in Mobile Robot based on embedded Linux and Goal is in the system embodiment will be able to track the intruder. From Network Camera uses Wireless Lan transmits an image with server, grasps direction of the intruder used Block Matching algorithms from server, transmits direction information and tracks an intruder. The robot tracks the intruder according to gets the effective image of an intruder. In compliance with this paper the system which is embodied is linked with a different surveillance system and as intelligent surveillance system there is a possibility of becoming worse a reliability.

Design and implementation of a surveillance robot (TMO 기반 감시 로봇의 설계 및 구현)

  • Chung, Yoojin;Park, Sunsik;Lee, Jaehyo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.856-860
    • /
    • 2009
  • In this paper, we design and implement a surveillance robot to detect an intruder in an empty office. We use a TMO-Linux kernel for a real-time surveillance and use a X-Bot platform for a robot. We design and implement an image server to process images and to detect an intruder. And we design and implement a client to communicate with a image server and TMO server and control a camera on a surveillance robot.

  • PDF

Multiple Wireless Networks based Control System for Unmanned Surveillance Robot (무인 경비 로봇을 위한 다중 무선 통신 기반 관제시스템)

  • Uhm, Taeyoung;Jung, Joon-Young;Cho, Sung-Hoon;Bae, Gi-Deok;Choi, Young-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.392-397
    • /
    • 2020
  • Unmanned robots are very useful for autonomous security systems. These robots navigate autonomously move in a large area for surveillance. It is very important for robots that cover such a wide area to communicate with a control systems. Therefore, the control system needs various communication methods to check the status of the robot and send/receive messages. In addition, it is necessary to provide an easy interface for the user to send security mission commands to the robot. In this paper, we propose a control system based on a variety of communication techniques to perform security by safely communicating with a number of robots in a wide area space. The proposed system designed for considering user UI, data storage and management, and shows usability by constructing it in a real environment.

Dividing Occluded Humans Based on an Artificial Neural Network for the Vision of a Surveillance Robot (감시용 로봇의 시각을 위한 인공 신경망 기반 겹친 사람의 구분)

  • Do, Yong-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.505-510
    • /
    • 2009
  • In recent years the space where a robot works has been expanding to the human space unlike traditional industrial robots that work only at fixed positions apart from humans. A human in the recent situation may be the owner of a robot or the target in a robotic application. This paper deals with the latter case; when a robot vision system is employed to monitor humans for a surveillance application, each person in a scene needs to be identified. Humans, however, often move together, and occlusions between them occur frequently. Although this problem has not been seriously tackled in relevant literature, it brings difficulty into later image analysis steps such as tracking and scene understanding. In this paper, a probabilistic neural network is employed to learn the patterns of the best dividing position along the top pixels of an image region of partly occlude people. As this method uses only shape information from an image, it is simple and can be implemented in real time.

A Graphical User Interface Design for Surveillance and Security Robot (감시경계 로봇의 그래픽 사용자 인터페이스 설계)

  • Choi, Duck-Kyu;Lee, Chun-Woo;Lee, Choonjoo
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.24-32
    • /
    • 2015
  • This paper introduces a graphical user interface design that is aimed to apply to the surveillance and security robot, which is the pilot program for the army unmanned light combat vehicle. It is essential to consider the activities of robot users under the changing security environment in order to design the efficient graphical user interface between user and robot to accomplish the designated mission. The proposed design approach firstly identifies the user activities to accomplish the mission in the standardized scenarios of military surveillance and security operation and then develops the hierarchy of the interface elements that are required to execute the tasks in the surveillance and security scenarios. The developed graphical user interface includes input control component, navigation component, information display component, and accordion and verified by the potential users from the various skilled levels with the military background. The assessment said that the newly developed user interface includes all the critical elements to execute the mission and is simpler and more intuitive compared to the legacy interface design that was more focused on the technical and functional information and informative to the system developing engineers rather than field users.

Design and Implementation of Surveillance and Combat Robot Using Smart Phone (스마트폰을 이용한 정찰 및 전투 로봇의 설계와 구현)

  • Kim, Do-Hyun;Park, Young-Sik;Kwon, Sung-Gab;Yang, Yeong-Yil
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.93-98
    • /
    • 2011
  • In this paper, we propose the surveillance and combat robot framework for remote monitoring and robot control on the smart phone, which is implemented with the fusion technology called RITS(Robot technology & Information Technology System). In our implemented system, the camera phone mounted on the robot generates signals to control the robot and sends images to the smart phone of the operator. Therefore, we can monitor the surrounding area of the robot with the smart phone. Besides the control of the movement of the robot, we can fire the weapons armed on the robot by sending the fire command. From experimental results, we can conclude that it's possible to control the robot and monitor the surrounding area of the robot and fire the weapons in real time in the region where the 3G(Generation) mobile communication is possible. In addition, we controlled the robot using the 2G mobile communication or wired phone when the robot is in the visual range.

Target-Tracking System for Mobile Surveillance Robot Using CAMShift Image Processing Technique (CAMShift 영상 처리 기법을 이용한 기동형 경계 로봇의 목표추적 시스템)

  • Seo, Bong-Cheol;Kim, Sung-Soo;Lee, Dong-Youm
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.129-136
    • /
    • 2014
  • Target-tracking systems are important for carrying out effective surveillance missions using mobile surveillance robots. In this paper, we propose a target-tracking algorithm using camera image data for a three-axis mobile surveillance robot and carry out an actual hardware test for verifying the proposed algorithm. The heading direction vector of a camera system is deduced from the position error between the viewfinder center and the object center in a camera image. The position error is obtained using the CAMShift(Continuously Adaptive Mean Shift) algorithm, an image processing technique. The performance test of an actual three-axis mobile surveillance robot was carried out for verifying the proposed target-tracking algorithm in a real environment.

Emergency Situation Detection using Images from Surveillance Camera and Mobile Robot Tracking System (감시카메라 영상기반 응급상황 탐지 및 이동로봇 추적 시스템)

  • Han, Tae-Woo;Seo, Yong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.101-107
    • /
    • 2009
  • In this paper, we describe a method of detecting emergency situation using images from surveillance cameras and propose a mobile robot tracking system for detailed examination of that situation. We are able to track a few persons and recognize their actions by an analyzing image sequences acquired from a fixed camera on all sides of buildings. When emergency situation is detected, a mobile robot moves and closely examines the place where the emergency is occurred. In order to recognize actions of a few persons using a sequence of images from surveillance cameras images, we need to track and manage a list of the regions which are regarded as human appearances. Interest regions are segmented from the background using MOG(Mixture of Gaussian) model and continuously tracked using appearance model in a single image. Then we construct a MHI(Motion History Image) for a tracked person using silhouette information of region blobs and model actions. Emergency situation is finally detected by applying these information to neural network. And we also implement mobile robot tracking technology using the distance between the person and a mobile robot.

  • PDF

Verification of Camera-Image-Based Target-Tracking Algorithm for Mobile Surveillance Robot Using Virtual Simulation (가상 시뮬레이션을 이용한 기동형 경계 로봇의 영상 기반 목표추적 알고리즘 검증)

  • Lee, Dong-Youm;Seo, Bong-Cheol;Kim, Sung-Soo;Park, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1463-1471
    • /
    • 2012
  • In this study, a 3-axis camera system design is proposed for application to an existing 2-axis surveillance robot. A camera-image-based target-tracking algorithm for this robot has also been proposed. The algorithm has been validated using a virtual simulation. In the algorithm, the heading direction vector of the camera system in the mobile surveillance robot is obtained by the position error between the center of the view finder and the center of the object in the camera image. By using the heading direction vector of the camera system, the desired pan and tilt angles for target-tracking and the desired roll angle for the stabilization of the camera image are obtained through inverse kinematics. The algorithm has been validated using a virtual simulation model based on MATLAB and ADAMS by checking the corresponding movement of the robot to the target motion and the virtual image error of the view finder.