• Title/Summary/Keyword: Surveillance Radar

Search Result 168, Processing Time 0.026 seconds

Ship Detection by Satellite Data: Radiometric and Geometric Calibrations of RADARSAT Data (위성 데이터에 의한 선박 탐지: RADARSAT의 대기보정과 기하보정)

  • Yang Chan-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.49-52
    • /
    • 2004
  • RADARSAT is one of many possible data sources that can play an important role in marine surveillance including ship detection because radar sensors have the two primary advantages: all-weather and day or night imaging. However, atmospheric effects on SAR imaging can not be bypassed and any remote sensing image has various geometric distortions. In this study, radiometric and geometric calibrations for RADARSAT/SAR data are tried using SGX products georeferenced as level 1. For radiometric calibration, information on the magnitude of the radar backscatter coefficient of the imaged terrain is extracted from the processed image data. Conversion method of the pixel DNs to beta nought and sigma nought is also investigated Finally, automatic geometric calibration based on the header file is compared to a marine chart.

  • PDF

Analysis of Phase Noise in a FM-CW Radar (FM-CW 레이다에서의 위상잡음 분석)

  • Lee, Jonggil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.758-761
    • /
    • 2009
  • It is necessary to estimate the Doppler spectrum for each range cell for the extraction of useful information from the return echoes in radar systems used for the remote sending purpose such as detection of moving targets and weather surveillance. The signal amplitude in the given frequency band is the important parameter in the detection and tracking of targets. However, the system performance can be seriously degraded if the efficient removal of the strong clutter is not possible. If the phase noise spreads both the signal and clutter, the clutter removal can be very difficult and the accuracy of frequency estimates is also deteriorated. Therefore, in this paper, the effects of phase noise are analyzed in the estimation of beat frequencies.

  • PDF

Indoor Environment Drone Detection through DBSCAN and Deep Learning

  • Ha Tran Thi;Hien Pham The;Yun-Seok Mun;Ic-Pyo Hong
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.439-449
    • /
    • 2023
  • In an era marked by the increasing use of drones and the growing demand for indoor surveillance, the development of a robust application for detecting and tracking both drones and humans within indoor spaces becomes imperative. This study presents an innovative application that uses FMCW radar to detect human and drone motions from the cloud point. At the outset, the DBSCAN (Density-based Spatial Clustering of Applications with Noise) algorithm is utilized to categorize cloud points into distinct groups, each representing the objects present in the tracking area. Notably, this algorithm demonstrates remarkable efficiency, particularly in clustering drone point clouds, achieving an impressive accuracy of up to 92.8%. Subsequently, the clusters are discerned and classified into either humans or drones by employing a deep learning model. A trio of models, including Deep Neural Network (DNN), Residual Network (ResNet), and Long Short-Term Memory (LSTM), are applied, and the outcomes reveal that the ResNet model achieves the highest accuracy. It attains an impressive 98.62% accuracy for identifying drone clusters and a noteworthy 96.75% accuracy for human clusters.

Design and Implementation of Mode S EXTENDED SQUITTER Demodulator (Mode S 확장 스퀴터 수신기 복조부 설계 및 구현)

  • Shin, Hee-sung;Yoon, Jun-chul;Seo, Jong-deok;Choi, Sang-bang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.189-192
    • /
    • 2014
  • Recently, U.S. and Europe, which are advanced to Air Traffic Control Management, are interest in replacing Radar System with Communications, Navigation and Surveillance(CNS) and Air Traffic Management(ATM). They pursue to research the efficient Air Traffic Control Management. This paper covers ADS-B 1090ES system which is one of CNS/ATM surveillance systems. This research satisfied all performance required by RTCA DO-268B and EUROCAE ED-129. It optimized algorism to mainly enhance performance such as quality of receiver signal, dynamic range, and so on. The optimized mechanism provided stable performance of demodulation, tuned the level of signal, and had reduced the false reception ratio by the signal level difference. The analyzed algorism helped great performance and will be considered to apply broad system applications.

  • PDF

Highway Incident Detection and Classification Algorithms using Multi-Channel CCTV (다채널 CCTV를 이용한 고속도로 돌발상황 검지 및 분류 알고리즘)

  • Jang, Hyeok;Hwang, Tae-Hyun;Yang, Hun-Jun;Jeong, Dong-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.23-29
    • /
    • 2014
  • The advanced traffic management system of intelligent transport systems automates the related traffic tasks such as vehicle speed, traffic volume and traffic incidents through the improved infrastructures like high definition cameras, high-performance radar sensors. For the safety of road users, especially, the automated incident detection and secondary accident prevention system is required. Normally, CCTV based image object detection and radar based object detection is used in this system. In this paper, we proposed the algorithm for real time highway incident detection system using multi surveillance cameras to mosaic video and track accurately the moving object that taken from different angles by background modeling. We confirmed through experiments that the video detection can supplement the short-range shaded area and the long-range detection limit of radar. In addition, the video detection has better classification features in daytime detection excluding the bad weather condition.

Study of the UCAS Susceptibility Parameters and Sensitivities by using Monte-Carlo Simulation (몬테카를로 모사법을 이용한 무인전투기의 위약도에 영향을 미치는 파라미터와 민감도에 대한 연구)

  • Choi, Kwang-Sik;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.242-253
    • /
    • 2011
  • The typical missions for the current stand-off UAVs are surveillance and reconnaissance. On the other hand, the primary mission for the future UCAS will be combat mission such as SEAD under the man-made ultimately hostile environment including SAM, antiaircraft artillery, threat radar, etc. Therefore, one of the most important challenges in UCAS design is improvement of survivability. The current studies for aircraft combat survivability are focused on the improvement of susceptibility and vulnerability of manned aircraft system. Although the survivability design methodology for UCAS might be very similar to the manned combat system but there are some differences in mission environment, system configuration, performance between manned and unmanned systems. So the parameters and their sensitivities which affect aircraft combat survivability are different in qualitatively and quantitatively. The susceptibility related parameters for F-16 C/D and X-45A as an example of manned and unmanned system are identified and the susceptibility parameter sensitivities are analyzed by using Monte-Carlo Simulation in this study.

A Novel Ambiguity Resolution Method of Radar Pulses using Genetic Algorithm (유전 알고리즘 기반 레이더 펄스 모호성 해결방법)

  • Han, Jinwoo;Jo, Jeil;Kim, Sanhae;Park, Jintae;Song, Kyuha
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.184-193
    • /
    • 2015
  • Passive Surveillance System based on the TDOA detects the emitter position in the air using TOA of pulses comprising emitter signal from multiple receivers. In case that PRI of pulses from the emitter is not enough big in comparison with the distance among receivers, it causes the ambiguity problem in selecting proper pulse pairs for TDOA emitter geolocation. In this paper, a novel ambiguity resolution method of radar pulses is presented by using genetic algorithm after changing ambiguity problem into optimization problem between TDOA of received pulses from each receiver and emitter position. Simulation results are presented to show the performance of the proposed method.

Increment Method of Radar Range using Noise Reduction (잡음 감소 기법을 활용한 레이다의 최대 거리 향상 기법)

  • Lee, Dong-Hyo;Chung, Daewon;Shin, Hanseop;Yang, Hyung-Mo;Kim, Sangdong;Kim, Bong-seok;Jin, Youngseok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.6
    • /
    • pp.1-10
    • /
    • 2019
  • This paper proposes a method to improve the detectable distance by reducing noise to perform a signal processing technique on the received signals. To increase the radar detection range, the noise component of the received signal has to be reduced. The proposed method reduces the noise component by employing two methods. First, the radar signals received with multiple pulses are accumulated. As the number of additions increases, the noise component gradually decreases due to noise randomness. On the other hand, the signal term gradually increases and thus signal to noise ratio increases. Secondly, after converting the accumulated signal into the frequency spectrum, a Least Mean Square (LMS) filter is applied. In the case of the radar received signal, desired signal exists in a specific part and most of the rest is a noise. Therefore, if the LMS filter is applied in the time domain, the noise increases. To prevent this, the LMS filter is applied after converting the received signal into the entire frequency spectrum. The LMS filter output is then transformed into the time domain and then range estimation algorithm is performed. Simulation results show that the proposed scheme reduces the noise component by about 25 dB. The experiment was conducted by comparing the proposed results with the conventional results of the radars held by the Korea Aerospace Research Institute for the international space station.

An Adaptive Multiple Target Tracking Filter Using the EM Algorithm (EM 알고리즘을 이용한 적응다중표적추적필터)

  • Hong Jeong;Park, Jeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.5
    • /
    • pp.583-597
    • /
    • 2001
  • Tracking the targets of interest has been one of the major research areas in radar surveillance system. We formulate the tracking problem as an incomplete data problem and apply the EM algorithm to obtain the MAP estimate. The resulting filter has a recursive structure analogous to the Kalman filter. The difference is that the measurement-update deals with multiple measurements and the parameter-update can estimate the system parameters. Through extensive experiments, it turns out that the proposed system is better than PDAF and NNF in tracking the targets. Also, the performance degrades gracefully as the disturbances become stronger.

  • PDF

On Radar Surveillance in Statistical Perspective for the Classroom

  • Kim, G. Daniel;Kim, Sung-Sook
    • Research in Mathematical Education
    • /
    • v.6 no.1
    • /
    • pp.97-106
    • /
    • 2002
  • Educators have found that the concept of randomness is often misunderstood by students. Chance recently pointed out that students should be introduced to the concept of randomness through the use of simulations. In this article, we studied various aspects of the probability distribution off linear random path in a circle and introduce some related simulations to guide student exploration and discovery. Consider a random line segment that crosses a circle with a certain radius. Perhaps it can be considered to be a path that an airplane shows up and flies into a random direction in a monitor. What is the expected amount of flying distance through the monitor, and the expected variation\ulcorner Are we monitoring what we see scientifically\ulcorner This article studies the probability distribution and some related aspects of a linear random path within a circular monitor. Some simulative activity is also introduced which can be used in a statistics or probability classes.

  • PDF