
Ⅰ. Introduction

Drones have transcended their early role as 

aerial cameras and have assumed multifaceted 

roles across industries. They now play pivotal 

roles in agriculture, capturing data for precision.

Environmental scientists and researchers have 

turned to drones to collect data for ecological 

studies and environmental monitoring. In [2], 

Authors use drones and air quality sensors in 

environmental monitoring of air pollutant emissions. 

Otherwise, Drones offer an efficient and cost- 

effective means of inspecting critical infrastructure, 

including bridges, power lines, and communication 

towers. These applications contribute to the 

timely detection of maintenance issues and the 

prevention of potential hazards, enhancing overall 

infrastructure safety [3]. Nonetheless, due to the 

rapid growth of the drone manufacturing industry, 

these unmanned aerial vehicles have become 

quite cost-effective for consumers, readily available 

for purchase, and user-friendly. Consequently, this 

accessibility has led to an increase in individuals 

utilizing drones for nefarious purposes, such as 

illegal surveillance or data collection. In response 

to this challenge, various studies have been 
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conducted, suggesting methods to detect and 

differentiate drones from other aerial entities, like 

birds, enabling the timely alerting of authorities 

when drones encroach upon restricted or private 

spaces. Nonetheless, due to the rapid growth of 

the drone manufacturing industry, these unmanned 

aerial vehicles have become quite cost-effective 

for consumers, readily available for purchase, 

and user-friendly. Consequently, this accessibility 

has led to an increase in individuals utilizing 

drones for nefarious purposes, such as illegal 

surveillance or data collection. In response to this 

challenge, various studies have been conducted, 

suggesting methods to detect and differentiate 

drones from other aerial entities, like birds, 

enabling the timely alerting of authorities when 

drones encroach upon restricted or private spaces 

[4], [5], [6].

In indoor environment, drones also have found 

various applications such as warehouse inventory 

management [7], [8] or security monitoring within 

shopping malls, airports. However, drones primarily 

depend on GPS (Global Positioning System) for their 

location, and GPS tends to perform inadequately in 

indoor settings. Consequently, the necessity for a 

system capable of detecting and tracking drones 

becomes critical to ensure the smooth operation 

of drones. Otherwise, accurately distinguishing 

between drones and humans within indoor settings 

carries significant importance across multiple 

areas. Primarily, this differentiation plays a vital 

role in ensuring safety, averting potential collisions, 

and protecting individuals who share indoor 

spaces with drones. Precise identification enables 

the implementation of safety measures, reducing 

the associated risks of drone operations and 

safeguarding the physical well-being of occupants. 

Additionally, the accurate classification of drones 

and humans indoors not only improves safety 

and security but also ensures adherence to 

regulations, fostering a conducive and well-organized 

indoor environment. As a result, this paper is 

dedicated to the development of an application 

aimed at addressing security, privacy, and safety 

concerns within indoor environments. Our application 

is designed to identify and monitor both humans 

and drones, and it relies on radar technology, 

specifically the Frequency-Modulated Continuous- 

Wave (FMCW) Radar. FMCW radar is chosen for 

its superior performance in various conditions, 

including situations with fog and limited visibility. 

Moreover, FMCW radar delivers exceptional precision 

in measuring distances, facilitating accurate 

tracking over extended ranges. An additional 

advantage is that FMCW radar operates continuously, 

ensuring uninterrupted surveillance, which is 

particularly well-suited for security and monitoring 

applications. This article introduces a method 

for processing point cloud data obtained from 

radar. It involves clustering the point clouds to 

identify the quantity of objects within them and 

then utilizing deep learning algorithms to predict 

whether a cluster corresponds to a human or a 

drone, ultimately providing precise location 

information for the detected objects. For the 

clustering of point clouds, we employ the DBSCAN 

algorithm, which relies on point density to 

delineate clusters. In terms of cluster detection, 

three deep learning models, specifically DNN, 

ResNet, and LSTM, are employed to determine 

which model achieves the highest accuracy when 

evaluated against our dataset.

The structure of this paper is as follows. In 

section II, we will delve into the theory and 

methodology associated with the algorithms 

utilized. Section III is dedicated to detailing the 

experimental setup and the real-world outcomes 

of our application. Lastly, in section IV, we will 

wrap up with the conclusion and future work.

Ⅱ. Methodology and Relating background 

1. Methodology

As illustrated in Figure 1, our research methodology 

involves two main phases: the Training and 

testing phase and the Actual Tracking phase. In 
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the initial Training and Testing of the Model 

phase, the process starts with data acquisition 

through an FMCW radar, which provides point 

cloud information. We then apply DBSCAN 

techniques to cluster the data within the point 

cloud. After this preprocessing, the clusters are 

categorized into one of three labels: 0 for 

drones, 1 for humans, and -1 for noise. The data 

is then standardized to create appropriate features, 

which are used as input data for the subsequent 

training and testing of Deep Learning models. 

We employ three different Deep Learning models 

to determine the identification of humans or drones 

within the clusters, comparing their accuracy to 

select the most suitable model for use in the 

Actual Tracking phase.

In the Actual Tracking phase, we continue to 

utilize radar data acquisition, similar to the initial 

step in the previous phase. Subsequently, the data 

concerning the points within each static frame is 

input into the tracking application. Within the 

tracking application, the point clouds are subjected 

to DBSCAN clustering to segment them into 

individual objects within the tracking area. 

Following this, the cluster data is standardized 

into input features, enabling the deep learning 

model to categorize the clusters. The ultimate 

result generated by the tracking application is 

a two-dimensional tracking viewer, presenting 

about the object types within the tracking area 

and their respective coordinates, as depicted in 

Figure 1.

2. DBSCAN algorithm

DBSCAN [9] focuses on identifying dense regions 

in the data space and separating them from sparse 

areas. Unlike traditional clustering algorithms, 

DBSCAN can automatically determine the number 

of clusters in the data. This property makes it 

highly suitable for real-world datasets where the 

number of clusters is unknown or variable.

According to the density connectivity concept, 

which underpins DBSCAN, data points are deemed 

to be a part of the same cluster if the are close 

enough to one another and have a local density 

of data points that is higher than a predetermined 

threshold. The following are the main ideas 

behind the DBSCAN algorithm:

Epsilon ( ) Neighborhood: DBSCAN classifies a 

neighborhood as a collection of data points that 

are all within a certain   distance from each 

other. Every point that is situated inside the 

-neighborhood of another point is deemed capable 

of becoming a member of the cluster.

Core Points: A data point is deemed core if its 

-neighborhood contains at least data points 

(minPts), including itself. Core points show where 

the dataset is densely populated.

Direct Density Reachability: If a point q is a 

core point and a data point p is in its 

-neighborhood, then p is directly density-reachable 

from q.

Density-Connected Components: A maximum 

collection of data points in which each point is 

directly density-reachable from each other point 

in the same set is known as a density-connected 

component.

Noise Points: Outliers or noise points are data 

points that do not fit into any density-connected 

component.

 DBSCAN uses the aforementioned concepts to 

Fig. 1. Flowchart of methodology.
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categorize data points as noise, outliers, or clusters. 

The approach adds core points and their reachable 

neighbors iteratively, starting with an arbitrary 

data point and growing the cluster. Until no 

more core points can be added to the cluster, 

the procedure is repeated.

3. Deep learning algorithms

3.1 DNN algorithm

The field of artificial intelligence and machine 

learning has seen a radical transformation in 

recent years with the introduction of Deep 

Neural Networks. DNNs are a type of artificial 

neural network that can extract hierarchical 

representations from input. They are made up of 

several layers. Deep neural networks (DNNs) are 

far more complicated task-aware than standard 

shallow networks because they automatically find 

complex patterns in the data. Examples of these 

tasks include picture and audio recognition, natural 

language processing, and reinforcement learning.

The fundamental component of DNNs is its 

design, which is made up of three layers: input, 

hidden, and output. Each layer is made up of 

linked nodes or neurons. Through a process 

known as backpropagation, the weights associated 

with the connections between neurons are 

learnt, and these weights are then adjusted to 

minimize the discrepancy between the network’s 

predictions and the actual targets. The following 

are the main theoretical ideas that underpin DNNs:

Activation Functions: To incorporate non-linearities 

and enable the network to learn and represent 

complicated connections within the data, neurons 

inside DNNs use activation functions, such as 

the sigmoid or rectified linear unit (ReLU).

Feedforward and Backpropagation: DNNs handle 

data in a feedforward fashion. During training, 

errors are computed using a loss function. Iteratively 

enhancing the network’s performance, the back- 

propagation technique modifies the network’s 

weights to minimize this error.

Optimization approaches: To improve training 

and avoid overfitting, DNNs use a variety of 

optimization approaches, including as stochastic 

gradient descent, adaptive learning rates (like 

Adam, RMSprop), and regularization techniques 

(like dropout).

DNNs are fundamentally based on their capacity 

to extract complex characteristics from data. 

Every layer in the network picks up increasingly 

complicated representations as data moves across 

it. DNNs are able to abstract features through 

hierarchical representation learning, which gives 

them the capacity to identify patterns in unpro- 

cessed data. This skill is critical for jobs like 

object identification, language translation, and 

decision-making.

3.2 ResNet algorithm

Although deep neural networks have shown 

impressive results in a variety of applications, 

they encounter major challenges as network 

depth grows. The vanishing gradient problem 

makes deep networks harder to train and makes 

learning meaningful representations in very deep 

architectures more complex. He et al. (2015) 

presented Residual Networks (ResNets)[10] as a 

clever solution to this issue, making it possible 

to build astonishingly deep networks that are 

more accurate and easier to train. The insertion 

of residual connections, which provide shortcut 

pathways for the gradient to travel more directly 

from the input to the output, is the core innovation 

of ResNets. In contrast, every layer in classic 

feedforward designs has to learn an identity 

mapping. The following are the main theoretical 

ideas that underpin ResNets:

Residual Learning: ResNets present the idea of 

residual blocks, which comprise one or more 

convolutional layers in each block. Relative blocks 

try to learn the residual, or the difference between 

the intended output and the current input, as 

opposed to learning the output directly. The final 

output is then obtained by adding the identity 

mapping to the residual.
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Shortcut Connections: provide gradients a straight 

route to follow without passing through the 

intermediary layers. Gradients can now avoid the 

vanishing gradient issue, allowing for the efficient 

training of extremely deep networks.

Stochastic Gradient Descent with ResNets: By 

having shortcut connections, gradients may propagate 

along a clear path during backpropagation, which 

helps to mitigate the vanishing gradient issue 

that usually causes training deep networks to be 

difficult.

3.3 LSTM algorithm

Sequential data, which is distinguished by its 

temporal dependencies, is widely used in real-world 

applications, such as financial time series, sensor 

data, audio, and text. Recurrent neural networks 

(RNNs) of the Long Short-Term Memory (LSTM) 

[11] kind have addressed the drawbacks of 

conventional RNNs and become an essential tool 

for modeling sequential data.

The primary advancement in LSTMs is the 

addition of memory cells, which allow them to 

retain information across lengthy periods and 

detect long-range relationships. Among the fund- 

amental ideas in LSTM theory are:

Memory Cells: LSTMs are equipped with memory 

cells that have the capacity to store and retrieve 

data across several time steps. Three gates are 

included in these cells: an input gate, an output 

gate, and a forget gate. The information entering 

and leaving the memory cell is managed by these 

gates.

Input Gate: This device controls how information 

is updated into the memory cell. It chooses 

which data from the previous cell state and the 

current input is kept in the cell.

Forget Gate: The forget gate regulates whether 

data is kept in the cell’s memory or deleted. It 

makes the decision about what data from the 

prior cell state should be retained and what 

should be deleted.

Output Gate: At each time step, the output 

gate determines whether data from the memory 

cell should be sent to the network’s output.

Activation Functions: To regulate the information 

flow within the memory cell and gates, latch- 

state transistors (LSTMs) employ activation functions 

such as the hyperbolic tangent (tanh).

Ⅲ. Experiment setup and Result

1. Experiment

Retina-4SN radar is an FMCW radar that we 

employ in this work to collect experiment data, 

as shown in figure 2. It can obtain point cloud 

data in four dimensions (x, y, z, and Doppler 

velocity) via a WiFi interface. It can transmit an 

FMCW signal at frequencies ranging from 71 to 

81 GHz. 

Fig. 2. Retina-4SN radar.

Three different-sized drones are used to collect 

drone data. Additionally, we enlisted three people, 

each with a different height and body com- 

position, to collect human data. The experiment 

is conducted indoors in a multi sport stadium. 

The dataset was acquired inside a 7m (Ox) x 

5.5m (Oy) rectangle.

Three primary scenarios comprise the data 

collecting process: the first involves a monitoring 

region with a single item which is a human, the 

second involves a tracking area with single item 

which a drone, and the third involves more than 

one thing. A person or drone will be transported 

along various fundamental trajectories such as: 

freely, in a circle, vertically, horizontally, and 

diagonally. When there are two or more objects, 
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they are moved along the same trajectory as if 

there were only one. We are also interested in 

the objects’ relative positions to one another, 

such as when the first object is on the left, right, 

front, or behind the second object, as well as in 

unique situations like when the drone flies directly 

overhead a person.

2. Result and Discussion

2.1 Clustering algorithm

In this paper, we choose the   value based on 

the analyzes distances between pairs of points in 

three-dimensional (3D) coordinate spaces. Initially, 

we compute the distances between pairs of 

points in the 3D (Oxyz) coordinate system. 

Following that, we detect peak ( ) in distance 

distributions of three dimension. Within each 

static frame, the DBSCAN algorithm employs the 

3D coordinates of all data points ( ) as well as 

  value to determine the cluster count and to 

assign each point to its respective cluster. The 

accuracy () is calculated using the below 

equation:

   


(1)

where:

TF: the number of frames which are correctly 

clustered

FF: the number of frames which are incorrectly 

clustered

Table 1 shows the result when using DBSCAN 

algorithm in clustering frame in three cases such 

as: only 1 drone, only 1 human and more than 

one object in tracking area. When the data table 

is examined, it becomes evident that the scenario 

involving only a single drone attains the highest 

accuracy, reaching 92.8% across 21,368 frames. 

The second-best accuracy of 88.87% is observed 

in the case of a single drone over 13,193 frames. 

In scenarios where there are 2 or more objects 

in the frames, the lowest clustering accuracy is 

achieved, amounting to 71.87% across 39,987 

frames. During our observations, the drone’s 

point clouds exhibit a uniform and concentrated 

density, forming cohesive blocks. In contrast, the 

point clouds generated by individuals occasionally 

lack such cohesion, often splitting into two or 

three distinct segments, based on the person’s 

height. This fragmentation presents a challenge for 

DBSCAN, causing confusion during the clustering 

process. Furthermore, when multiple objects are 

in close proximity, with a distance less than 

37cm (± 3cm) between them, their respective 

point clouds also converge, leading to DBSCAN 

mistakenly grouping them into the same cluster.

Table 1. Accuracy of clustering result by using DBSCAN 

algorithm.

Drone Human Multiple

Accuracy 92.8% 88.87% 71.87%

Total 21368 13193 39987

2.2 Standardizing data

We normalize the original data for each cluster 

in the left column of table 2 into the appropriate 

input characteristics in the right column before 

training the model.

Table 2. Original data and Input features of a cluster.

Original data Input features 

3D Coordinates of all points 
(C)

Number of points ( )

centroid point x ( )

centroid point y ( )

centroid point z ( )







Powers of all points Average power ( )

Velocities of all points Average velocity ( )

Label

Human 1

Drone 0

Noise -1
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First, the 3D coordinates of n points (C): ((, 

, ), (), ..., ()) will be transformed 

into  = n,   calculated using equation (2),  

calculated using equation (3), and   calculated 

using equation (4). Additionally,  ,  , and   

will be determined using equations (5), (6), and 

(7), respectively.

 


  





(2)

 


  





(3)

 


  





(4)

  max min (5)

  max min (6)

  max min (7)

In the process of cluster labeling, we allocated 

numerical values to each cluster: we used -1 to 

represent noise, 0 to indicate drones, and 1 to 

signify humans. The power values of n points 

(   ) are transformed into the , and 

computed using equation (8):

 


  





(8)

Finally, the velocity of n points (   ) 

are normalized into the  , and calculated 

using equation below:

 


  





(9)

2.3 Object detection

The input data for three deep learning models 

comprises nine input features (,  ,  ,  , 

 ,  ,  , ,  ) which are described in 

table 2. The architecture of our DNN model is 

shown in Figure 3(a). It features a Batch 

Normalization layer at the start to standardize 

the input data, along with a dropout layer to 

mitigate overfitting. Figure 3(b) illustrates the 

architecture of the ResNet model used in our 

research, which closely resembles the DNN 

model. This configuration includes two hidden 

layers, each preceded by a Batch Normalization 

layer to normalize the input data and apply the 

rectified linear unit (ReLU) activation layer. In 

the second block, we’ve incorporated a shortcut 

link that adds the intermediate input to its 

output before passing through the ReLU layer. 

This approach helps address the common issue 

of vanishing gradients often encountered in DNN 

algorithms. Due to the small number of nine 

input features, in the ResNet model training 

phase, the effort to boost accuracy by adding 

more residual blocks did not yield improvements. 

Additionally, this adjustment significantly extended 

the training duration. As a result, a choice was 

made to adopt a simplified approach, employing 

just one hidden layer and a single residual block. 

To combat overfitting, a dropout layer is applied 

(a)

(b)

(c)

Fig. 3. (a) DNN architecture, (b) ResNet architecture, 

(c) LSTM architecture.
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after the second layer.

Moving on to our LSTM network model, as 

depicted in Figure 3(c), it comprises two LSTM 

layers. We also implement Batch Normalization 

to preprocess the input data before it enters 

these layers, and we use dropout to counteract 

overfitting.

The dataset comprises input features from 

63,252 clusters representing humans and 82,940 

clusters representing drones. These data are then 

used to evaluate the accuracy of three different 

deep learning models in terms of their outputs. 

The precise ratio () is computed using the 

formula provided below.

   


(10)

where:

TC: the number of clusters which are correctly 

predicted

FC: the number of clusters which are wrongly 

predicted

The detailed accuracy data of the three models 

in cluster prediction is illustrated in the figure 4. 

It’s evident that the LSTM model demonstrates 

the lowest accuracy among the three models, 

specifically, 78.94% for humans and 75.63% for 

drones.

On the other hand, the ResNet and DNN models 

exhibit commendable performance in predicting 

both people and drones. However, across the 

board, ResNet consistently delivers superior results. 

It achieves 98.62% accuracy for drones and 

96.75% for humans. Comparatively, DNN presents 

an accuracy of 98.49% for drones, a marginal 

0.13% lower than ResNet. Nevertheless, the 

predictions for people with the DNN model yield 

lower results, standing at 94.07%, which is 2.68% 

less than ResNet’s accuracy in this category.

Furthermore, the Retina-4SN radar has its own 

application designed for tracking people and 

recognizing human movements. To assess its 

performance, we conducted a comparative analysis 

with our ResNet model. In certain scenarios, the 

integration of the ResNet model yielded more 

precise results. For instance, as depicted in 

Figure 5(a), when two drones closely fly together, 

the radar system occasionally misidentifies them 

as a specific person, as observed in the tracking 

viewer on the left. In contrast, our system’s 

tracking viewer, shown in Figure 5(b), provides 

accurate results in the case of two drones flying 

in close proximity.

(a)

(b)

Fig. 5. (a) tracking view result and raw point cloud data 

in a static frame from Retina-4SN’s application, (b) 

our tracking view result in same frame with (a).

Another scenario in Figure 6(a) involves a 

situation where drone 1 is flying near the ground. 

Fig. 4. Comparison accuracy of ResNet, DNN, LSTM 

models in detection object.
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In this instance, the radar system mistakenly 

categorizes it as a person, while our system’s 

tracking viewer correctly identifies it as two 

drones as shown in Figure 6(b).

(a) (b)

(c)

Fig. 6. (a) tracking view result and raw point cloud data 

from Retina-4SN’s application when a drone 

flies near the ground, (b) our tracking view 

result in same frame with (a).

2.4 Object tracking

In order to establish the object’s location within 

the tracking area, we make use of two input 

features, specifically   and  , as indicated in 

the table 2. These parameters represent the 

object’s coordinates along the Ox and Oy axes. 

Subsequently, following the identification of the 

object as either a human or a drone through the 

deep learning model, it is depicted on the 2D 

tracking viewer, with the corresponding icon 

positioned at the coordinates ( ,  ).

In Figure 7, we observe a scenario where the 

tracking area contains multiple distinct objects, 

comprising three individuals and two drones. 

Figures 7(a) and 7(b) present the raw data 

captured by the radar in a three-dimensional 

space, offering views from the front and from 

above, respectively. Figure 7(c) represents the 

tracking viewer generated by our system. Upon 

closer examination, it becomes evident that Figure 

7(c) provides a comprehensive display of all 

object types and their precise positions, in direct 

comparison to the experimental setup.

(a)

(b)

(c)

Fig. 7. (a), (b) tracking view result and raw point cloud 

data from Retina-4SN’s application, (c) our 

tracking view result in same frame with (a), (b).

Ⅳ. Conclusion and Future work

1. Conclusion

This research paper introduces a system designed 

to detect and track humans and drones based on 
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data acquired from FMCW radar. Our approach 

relies on the data from point clouds, which 

includes coordinate information, along with 

associated power and velocity values, as input 

data. Subsequently, we employ DBSCAN for 

clustering and segmenting the points into 

respective clusters within the point cloud. The 

data is then normalized, and a deep learning 

model is utilized to predict object clusters.

An examination of the clustering results reveals 

that DBSCAN performs most effectively when the 

tracking area contains only one object, particularly 

when that object is a specific drone, yielding an 

accuracy of up to 92.8%. However, when applied 

to frames with two or more objects, the accuracy 

of this algorithm substantially diminishes, high- 

lighting its limitations.

Regarding object detection, after employing 

three models with the dataset, the findings indicate 

that both DNN and ResNet models provide 

outputs with commendable accuracy. In particular, 

when analyzing specific data, the ResNet model 

excels in predicting clusters of drones and specific 

individuals. It achieves an accuracy rate of 

96.75% for people and 98.62% for drones.

2. Future work

Upon reviewing the data table reflecting the 

results of DBSCAN’s clustering, it becomes evident 

that this algorithm has notable limitations, part- 

icularly in tracking areas featuring multiple 

distinct objects. Only 71.87% of static frames are 

correctly clustered. Two primary reasons contribute 

to this challenge: firstly, when two clusters are 

positioned in close proximity, within a distance 

shorter than 37cm (±2cm), DBSCAN tends to 

misidentify them as a single entity. The second 

reason involves human clusters, which sporadically 

appear. Instances where points exhibit uneven 

density distribution, forming two or three separate 

small groups, also lead to incorrect outcomes 

when employing DBSCAN.

To address these limitations, our plans involve 

researching mathematical theories to enhance 

the DBSCAN algorithm, tailoring it to better suit 

our dataset, to mitigate the aforementioned errors 

and enhance clustering accuracy. Simultaneously, 

we aim to continually gather additional exper- 

imental data to further refine our deep learning 

model.
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