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Abstract

Tracking the targets of interest has been one of the major research areas in radar surveillance
system. We formulate the tracking problem as an incomplete data problem and apply the EM
algorithm to obtain the MAP estimate. The resulting filter has a recursive structure analogous to
the Kalman filter. The difference is that the measurement-update deals with multiple measurements
and the parameter-update can estimate the system parameters. Through extensive experiments, it
turns out that the proposed system is better than PDAF and NNF in tracking the targets. Also, the
performance degrades gracefully as the disturbances become stronger.

I . Introduction between the targets and measurements using a

matrix. Within a tracking gate, the optimal

Tracking all the targets of interest within the estimate of a target state is obtained by the

coverage region of radar has been one of the major conditional mean of the states given the
research fields in radar surveillance system™. The measurements.

difficulty of this arises from the noise Another approach for obtaining optimal
characteristics of the return signal that is often the association is the connectionist scheme™ ™. In

output of a detection system such as moving

target indication (MTI) radar’®.

One of the pioneering works in this field is the

joint  probabilistic data  association filter
(JPDAPY.  This is an expansion of the
probabilistic data association filter (PDAF)®® and

both methods are well described in"™ These

algorithms introduce an association mechanism
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this approach, the constraints on association are
represented with the connection strengths between

neurons. The energy function is often realized by

k' and the network finds

(10}

a Hopfield netwo
minimum energy state. Sengupta and Iltis™ used
this approach, and Jeong and Lee™!” showed that
there exists a better energy function that faithfully
reflects the natural constraints for optimal
association. One of the disadvantages of this
approach is that the parameters of the neural
network are determined by trial-and-error.

As yet another approach, there have been
emerging Interests in applying the expectation-

[18,19]

maximization (EM) algorithm to the tracking
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problem™ %! Major works include the papers by
Avitzourm], Gauvn't[m, and Molnar™®. The key
point of Avitzour's method® is to calculate the
target states using maximum likelihood (ML)
estimation in an EM fashion. Data observed over
a time interval is used and processed in block
form.

All

association and

of these schemes focus only on data

state estimation based on
measurements and thus additionally need a good
filter, such as the Kalman filter[24’25], for predicting
the target state in the next time frame. These two
operations, often denoted as measurement— and
time—updates, are the two key components in a
tracking filter. Integration of measurement- and
time-updates in an EM approach has been
successfully achieved by Molnar® by using a
maximum a posteriori probability (MAP) estimate
instead of Avitzour's ML approach.

In order to start from the most general case, we
like the

probability of detection, false alarm density, and

also include the system parameters,

measurement error variance to the parameters to
be estimated, in addition to the states of targets.
As a result, the formulation becomes an adaptive
filter that consists of a recursive time-update in
time and a recursive measurement-update in each
fixed time frame. This approach leads to a more
efficient filter that integrates EM and Kalman
filtering so that one can recursively predict,
independently for each target, the states while
incoming measurements improve the states and
system parameters. This scheme enables us to
build a tracking filter that can be computed for
dynamically changing environments in real time.

The organization of the rest of this article is as
follows. Section 2 explains a tracking filter that
consists of time—, measurement-, and parameter—
updates. Section 3 defines the problem on
measurement— and parameter-updates, introduces
parametric models of probability distributions, and

derives the solutions in closed forms. Separately

o

(584)

T &4

from this, the corresponding issues of the
covariance measurement update together with
computational complexity are discussed in section
4. Finally, experimental results are shown in

section 5.

. Tracking Filter Structure

Fig.1 shows the three parts of the tracking filter.
Time-update part predicts the target state,
measurement-update refines the predicted state
with the measurements, and parameter-update

part tunes the system parameters.

Time-Update
Measurement — ~ Measurement- Lo Taree; State
Update
Parameter-
Update
a1, 24, Az =g syal
Fig. 1. Measurement—-, time-, and parameter-
updates.

Assuming that the number of targets N is
known, we define the state as the positions and
velocities of the targets. For a specific target ¢ at

oLB)=(x,(h), x‘t(k) AR,

y(B)T, where and x{# and y{%) represent the

time &, it becomes
target position in rectangular coordinates, and
x{k) and y{k represent the target velocity.

Based on these notations, the dynamics of the

target ¢ can be expressed by the state equation

M
)

pky= Fo{k—1)+ Guw(k—1)
.Vj(k)Z H¢t(k)+ v(k)

where the state transition matrix F and the

process noise coupling matrix G are given by
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where T is the time interval. As usual, the noise
w(k—1) and w»(k) are white Gaussian M0, Q) and
MO, R(k), respectively. We assume that the
measurement vk is observed in rectangular
coordinates for simplicity and originates from the
target ¢ If y.(k does not originate from the
target ¢, y{A) is distributed uniformly. Note that
the measurement is usually available in polar
coordinates form, but we limit the model to the
linear observation case for simplicity.

It is well known that the time-update is given

by[26]

p(kk—1)= Fok—1lk—1), @
P(Hk—1)=FP{k—1lk-1)FT+ GQGT

A measurement generated from the target ¢ is

normally distributed as

tlyAR)g(Re—1)]= N Hp Rk—1), S (k) @)

where the measurement prediction covariance

Sk is given by

S k= HP(Ht~1)H"+ R(k (6)]

From these, the tracking gate is given by

VAR 2{y(B : vI(B ST (R vk <7} ©6

to restrict the measurement with the gate area to
reduce a computational burden, where (k)= y(&)
— Hp (Hk—1) t

constant that controls the gate size and the gate

is the innovation” and 7 is a

probability.
After finding the gate for each of the N targets,
the number of measurements in each gate are

counted and denoted with M(k. We define the

validation vector for target r as follows:

(585)

133

wl k) 2{w(Blie(1,M{(B]}, for t=[1,N 9]

Since measurements located outside of the gate
are simply discarded, the elements in this vector
are all one. This definition differs from that of the
ordinary validation matrix where some elements
may be 0. This case occurs when all the
measurements are globally counted. Similarly, we

define an association vector as

z (R 2{z/(Bliell, M(B]}, for t=[1, N @®

If the measurement ; originates from the target,
z{k)=1. If not, z{A=0. Somehow, this quantity
must be estimated from the given validation
vector. This problem is a kind of inverse mapping
where many solutions may exist. To limit the
possible solution space, one should rely on natural

constraints of the measurement-target association.

M. Measurement- and
Parameter-Updates

Among the components of the tracking filter
shown in Fig.1l, the structure of the time-update
is already clear as given in (3). Hence we have
only to investigate the structure of the other parts.
To begin with, we define the problem within the
context of stochastic estimation and derive the
necessary probability density functions. From
these, it is possible to derive the functions to be
maximized such as the Q- and M-functions. The
final goal is to derive optimal solutions for both the

states and the parameters.

1. Problem Formulation
the
combination of measurements Y(%) and validation
Ok as the W k),

Wk)={Y(k), &k}. The association vectors Z(k)

is considered to be the missing data. As a

In EM formulation we define the

vectors incomplete data

combination of the two quantities, the complete
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data X(k) becomes X(&={Y(h), Lk ,Z(K}. We
further define the quantity, X*={X(k),X(k~1),
-, X(0)} that is an accumulation of the present
and all the past data.

A parameter that controls the complete data is
the state @(& as used by Molnar®. In addition,
we define a parameter @(k£ that includes the
various sources of external influence. The most
important sources of (k) is the covariance matrix
R(k) of the measurement noise. The diagonal
components of R(k) are oX(% and d%(k), and the
off-diagonal components are all zeros. As we will
see later, the other important sources include the
false alarm density L, (% and the gate detection
probability «(k). Putting these altogether, we
define (R 2{c2(k), k), LLR,a(B:. As a result
of our extended model, the two quantities, the state
®(k) and the parameter #(k), jointly form the
(0(k), 68(R). the

upper and lower cases of the variables denote

parameter space Incidentally,
respectively the random variables and realizations.

The goal
(0(k), 6(k), given the observations (Y(&), k).

Let us observe the posterior pdf

is to determine the unknowns

(¢, 65 =p(xlg, 0, x* Vp(4] 0, x* V(pAx*)

=L o(s16. (416, $(HE— D} 0 60— 1)} ©)

where p(x4, 8, x* 'Y= (x4, 6) since the current
parameter implies all the past complete data,
2(416, )= [ ¢ 6, p(klk—1)] since the information
x*7! is contained in ¢(kk—1),p(Ax*" ) =pl A0
(k—1)], and C 1is the normalization constant,
because p(adx*!) is constant in terms of the
parameter. In this section, we omit (k) in the
equations for simplicity if there is no possibility of
confusion.

This posterior pdf enables us to employ
penalized EM™. To get the estimates of ¢ and @
simultaneously, ECM method is normally used®

However, here we use a different method to solve

243k A

(586)
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two parameters individually. For a fixed system

parameter, the state variable is determined with

the penalized EM method. Only after a stable
solution is reached, the system parameter is
determined. That is, if ¢(klke lim ¢P(HB), this

scheme becomes:

E—step: Q{¢loP(HE), 0°) = E{logtl «l¢, 8%y, w, ¢ (£lR), 6°)
M—step: ¢ V(M) = arg max M ¢, 6% P(HE), 8°]
MAP: 6= arg max M[ ¢ (klk), 6l ¢ (klk), 6°]

(10)

where the M-function is defined as

M ¢, B P (HE), 0°12E(logpl ¢, A2y, w, 4P (HB), 6°)
=Ql¢, Ao P (KA, 6V — K(4, 6)(11)

and the penalty function is given by
K(¢, )2 —logpl 4l 0, g(HE—1)1— log pl A 0(k—d)2])

"= ¢(£—1). It is important that the EM

loop and the parameter are separately computed.

Here,

Note also that the parameter determined in the
current process will be used again in the EM loop

of the next frame.

2. Parametric Models
We assume the N targets are statistically

independent and thus a derivation for only one
target will suffice. The other assumption is that
the x and y components of the state are mutually
independent and thus a derivation in one direction
is enough. In this Subsectioﬁ we derive probability
density functions to be used to get the Q-function.

The complete data log-likelihood function is

decomposed into

log p(xl¢, 6)=logp(Mw, 2, ¢, ) + log p(wlz2, ¢, 6)

+ log (24, ) (13

In the first term, measurement y only depend
upon (z, ¢, 8. In the second term, w depends

directly upon (z, 8). The third term can be

rewritten as p( 2 8), since z does not depend upon
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¢. Incorporating these facts, (13) becomes
log p(xl¢, 0) = logp(3z, ¢, O) + log p(wlz, 6)
+ log p( 2 6) (14)

The first term denotes the relationship between
the measurements and a target given the data
association. Naturally, this relationship must hold
separately for each measurement. By definition,
z;=1 means that y; is an observation of ¢ and
it is natural to model this relationship with the
Gaussian distribution y,~M Hg, R(k)), as defined
in (2). If z;=0, the measurement has a uniform

distribution. Therefore, we can write

M
2‘—24 vi= HO) "R (3~ HY)

M,

logp(yz, ¢, O)=

2z
2

_lo "|R(k

2. zj— log P,

=

—(M,— glz,-)log Vv, (15)

where # is the dimension of the observation
vector y, ie. n=2, P,is the gate probability, and
V is the area of the gate.

The second term in (14) denotes the relationship
between the validation and association vectors
given the system parameter. In detection theory, it
is well known that the number of false alarms has
a Poisson distribution, therefore, one can write

M,
R IAIEN

Hwlz, =ec L (16)

(M~

1 )Z)'

where L=L,V is the expected number of false

alarms in the gate, M,— =%z, is the number of

false alarms, and L, is the false alarm density. By
taking the logarithm of (16) and discarding all the

terms that do not depend on either ¢ or 8, we get

log !z, 6)=—L+<Mtﬁ‘lz,-)logL am

The final term in (14) describes the natural

constraints on the association vector. The

4
pl

(587)
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constraint is that the number of detected targets
in the gate can not exceed 1 according to the
definition of the gate. 2, 12;=0 means that a miss
error has occurred. With a parameter a2P,P,
called the gate detection probability, the quantity

z has the distribution:

log (2] ) = 3(22) log(1 “0”(22"‘1)1% 18)

where &(x) is the Kronecker delta function and P,
is the detection probablhty[zg]

As can be seen in (10), play, w, ¢(HR), 6°] is
needed for the expectation of (13). However, this
quantity is a function of 2z, and thus knowing
M2y, w ¢ P(HE, 6°] is sufficient for the expectation.
To be more specific, the conditional pdf is

LAy, w, P HE), )= ol sz, P (HA),

R wlz, LYl 2’1 (19)
where Z is a normalization constant. To simplify
this equation, we replace ¢° with actual values,
and delete independent variables.

The pdfs in (19) are very similar to those of the
log-likelihood function (13), except that ¢ and @
have been replaced with ¢Y(dk) 8",
all the pdfs the
log-likelihood, can be reused here. From (15), we

and

Therefore, derived for

have
p'[y'|z, ¢(0)(Hk), R0}= V—(M,‘—Z,n';z,Pg—E,:‘,z,
__glgjL M,

{2n"1S(dk)}

* exp{~ 1;%

{y;— HoP(HW1"S(HR ™ [ v,— H8'V(4R)]) (20)
where
S(Hk)= HP(HR HT+ R°(¥)
~HP(He— 1) HT+ R%(%) (21)

P(HB) during this

calculation, we use approximation. (16) and (18)

Because we can not use

are easily converted to
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0 e 0(M,— 27202) )
Hwlz, Lyl=e M=z
and
M, 0 M
07 _ .0 X a” —
A= (1- 3 Za) + 476 2a-1) @

where L'=L%V.

3. M Function
So far, we have derived the complete data

log-likelihood function and the conditional pdf of
the complete data. From these and (10), we have

Qls, 8P (HR), 6°]

M,
——L Sl RN~ 2a
[y,— H)"RYE) [ y;— Hp] —L°+(Mf—]ng”))

0
log L*+ E(0)1log 1 — 2°) + E(1)log —1‘{7- (24)
£

(o)

where z;” and E(x) are the expectations of z; and

B(Ef-”:‘lz,-—x), respectively. Note that z; is binary
but its expectation z/” is not. Also, E(x) is the
probability that the number of ones in the
association vector z is x. These two quantities,
z?(k and E(x), must be determined next.
Since each element of the association vector is
binary, and at most one element of the vector can

be one, Z” is simplified to

zP=plz= e}y, w, ¢ P4k, 6°] (25)

where e; is the unit vector whose jth element is
one. For notational convenience, we introduce a set

of auxiliary variable {a;:j=0,-, M} :

P(1~a"LY for j=0

1
"L (27)"| S(A4R)IY 2

a=

xexp|~y,~ H6 PR TSHR] ™' [y, ~ H P (HR))

otherwise

(26)

From (19), (25), and (26), we have the expectation

(588)

FA e T &%
of z;
=g @
“ Z:j'vi(}aj ’
and
E(0)= a? — z(Aﬁ).
S 28)

E()y=37" 2"

Note that the possible values of z,(#) are only 0
and 1, but the expectation z/”(# can naturally
have a value in the range [0,1].

The predicted state pdf pl¢(&)| 6k, (Hk—1)] is
Gaussian, with a mean ¢(kk—1) and covariance
P(Hk—1), and from (12), the penalty function

becomes

K(#) = log oL gl (k= 1))
—F{log[ (20| P(Hk— D)1+ [# (M~ 1) — ¢

P (Hk—1)[¢(HR—1)— ¢]} (29)

where d is the dimension of the state vector ¢.
As defined in (11), we obtain the M-function by
subtracting (29) from (24).

4. Solution of Measurement- and Parameter-

Updates

As we see in (10), the optimal parameter can be
obtained by maximizing the M-function. In the
M-step equation, Molnar’®? ignored the partition
function Z for simplicity. However the partition
function is not constant so this approximation can
reduce the performance. Therefore we derive the
M-function without removing the partition
function.

From (10), setting the gradient v ,M to zero[30]

and reorganizing and simplifying it by the matrix

[31,32]

identity due to Woodbury , one obtains the

closed form:

" (MR = ¢(Hk—1)+ P(HE—1)
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M Oy _
HTSs™! 2 =17, Z[‘,]}’; 1}52#{5»/@“8 D] (30)

where
M,
S= R°(k)/}§z}”+ HP(HE—DHT (31

It is easy to see that if one sets Ef«":'lz}”)(k)= 1,
state measurement update (30) is reduced to the
Also, if

5% 2P(B =0, then @(Hk) = #(H&—1). This means

standard measurement  update.

that if the target is lost, no change occurs for the
predicted state. Therefore, our formulation is
general in that it covers a system with multiple
candidates.

The results of the measurement-update appear
as the values of ¢(Hk) and z(%) in the equilibrium

state, where

2B = lim z P(#) (32)
pooo

The system parameter @={c%, o2, L, a} consists
of three types of variables. The first among them,
(6%, d%) consists the two diagonal elements of the
covariance matrix R.

Since a necessary condition for the maximizer is
that the gradient must be zero at equilibrium, we

obtain the necessary condition as

o g0
i 12

’

(33)
Mo~
oZy= 2,‘:12,15’3)/\— ¢y)z

22125

Similarly, we obtain the necessary conditions for

L, and o as

L,,=%,(M,-£V_: 2,), (34)

and

a= 33, )

#384% SPR #5HHK 137

In (33), if we use ¢,(H4k) and ¢,(Hk) instead of
#, and ¢, these estimates are biased, since
. (HE) and ¢, (Hk) are estimates. This bias can be
corrected by rearranging (33) to use ¢.(HkE)
instead of ¢, as follows:

2 202 00— 6 (MR + ¢ (MR — 6.1°

M, ~
2,’:12/

Mo - ’
N Z’=12’[xj,1‘ ?x(klk)] +{ 6. (BB — 6,1°,
212

DHIER Cr XC1)
IPEY

(36)

where P, is the variance of ¢, i.e., the first
diagonal component of the covariance estimate P.
To obtain (36), we assume that the measurement
and estimate errors are mutually independent. The
value ¢4 can be obtained in similar manner.

In order to get more stable estimates, it is better
to average the parameters over time. Hence, we
add one more step for time averaging with a

window of size D, given by
-l 'S _
0%k = Di'gbe(k D, 3N

where  8%(&)= (PR, >R, LYk, N7,

IV. Covariance Matrix Update

The original EM method mentioned nothing
about the covariance matrix of the estimate. Meng
and Rubin®™ introduced an algorithm called SEM
to resolve this issue. With the aid of their method,
we can derive here the exact covariance matrix to
meet our needs.

The EM algorithm implicitly defines a mapping
" WMD) = M P (HR), 0°(B)], for p=0,1,-, (38)
from the parameter space ¢(k) to itself, where

ML $(Rk), 8°(B)]2 arg max 4
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(DI P(HR), 0% BI- K[ 3BT}, (39)

Using the missing information principle by
Orchard and Woodbury™ and Theorem 4 given by

Dempster“g], Meng and Rubin®™ showed that

PR =[1,- KR}~ PLh),
=P+ 2Pk (40)

where I,is a dxd identity matrix, J ¢(Hk)] is the
Jacobian matrix for M{#(Hk), 8°(#] having the

(7, Pth element

M (HR), 0°(A)]

I

and P#) is the complete data covariance matrix.

A P(k) 1s given by

AP(R)=[I,— KD " Re(HR}P (B (42)

P (k) represents the ordinary prediction error in
Kalman filtering, where only single observation is
available, and 4 P(k) represents a newly added

variance, where multiple candidates are available.

f19]

As derived in"7, the complete data covariance

matrix can be written as

Kl o)1 7

PO “3)

Pc(k)={lc{¢(k)}+

}

where the expected complete data information

matrix is given by

I {g(R)} = E{L[ ¢(RIX(R) 1wl )} (44)
and the complete data information is
(gl = d%log ol x(B)|$(R) . B(R)] (45)

a¢(R) s ()]

To compute P k), we must know the complete

data log-likelihood and the penalty function. By
#(k), the

complete data log-likelihood becomes simpler:

discarding the terms do not have

(590)

T s

toglHx(BIBCR), 0001 =— 34 Z&2 (15,0~ Ho(R1”
R (By;(H— Hy(D} (46)
From this equation, we get
Lo Ap(B) = HTR™H 35 30 “n)

From (29), the Hessian matrix of the penalty

function becomes

2
KDL _ P7l(Hk—1)

ap(RadsT(R) “8)

Substituting (47) and (48) into (43), we finally get

PB)=[ P(Hk—1)— P(Hk—1) H' S '(k) HP(Hk—1)]
(49)

where

MR
=

S(h=R(B/ 2, 2~ ik + HP(Hk—DH". (50)

Here, we have once again used the matrix identity
due to Woodburym. If the problem is reduced to
Z(R=1.1t

a single measurement case, then % /%7
Is easy to verify that the resulting equation

becomes the covariance update in Kalman
filtering.

We assume that the number of targets,
measurements, and EM iterations are N, M, and
P, respectively. For the time-update, from (3), the
state update needs a multiplication between the
state transition matrix and the state vector. The
number of multiplications of the matrix/vector
multiplication is 4?, where d is the dimension of
the state, and we assume d is fixed. This
multiplication is done for each target, so the
computational complexity for the time-update is
O(N).

time—update, the number of multiplication for each

In the covariance update part of the

target is determined by 4 only. This leads to O(N).

The measurement-update consists of the E- and
the the of
multiplications for each target is proportional with
M. This is also same for the M-step. The E- and

M-steps. In E-step, number
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M-steps iterate P times to converge, hence the

resulting computational complexity is O(MNP).
The covariance—update is done only once after

the EM The of

multiplications is proportional with M to calculate

finishing loop. number

the Jacobian for each target. Calculation of P.(%)

and P(k) do not depend on the problem size. As
a result, the computational complexity for the
covariance update is O(NM).

Finally for the parameter-update, o¢2(# and

o%(#) each need 2M multiplications for each target.

Lk and a(k) need M—1 additions for each

target. So the computational complexity for
parameter— update is O(MN).

Note that most of the time must be spent in the
measurement—update in this filter. If this filter is
realized in parallel for each target, however, only
O(MP)

processor.

computations are needed for each

V. Experimental Results

In this section, the performance of the proposed
tracking filter is examined and is compared to that
of PDAF and the nearest neighbor filter (NNF).
This experiment is focused on the analysis of the
measurement-update with EM and parameter-
update with MAP.

Some conditions and parameters are kept
constant throughout the experiments, as described
here. The time interval T is set at 1 s. We do not

apply the process noise to the target movement

generation, but @=1.2106x107°I is used for the
filter parameter. The threshold used for the
validation gate is y=g£=9.2 and the

corresponding gate probability P, is 0.99.
The initial state setting is very important for

proper statistics with the Monte Carlo method. In

these experiments, the initial value of the state

estimation covariance matrix is

=®

e

(591
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Fodh ) g
- T2 0 0
P(0I0) = 0 0 £ AT (51)
0 0 &/T 208/ T

The initial state is generated randomly with a

Gaussian distribution

#(010)~N{¢(0), P(010)} (52)

For the scenario of crossing targets, ¢(0)=(-16.0
km, 0.20 km - s, 4.0 km, —0.05 km - )" is given
for the first target and #(0)=(-16.0 km, 0.20 km -

s, -40 km, 0.05 km + s )7 for the second target.
The time period during which data are collected is
120T. For a single target scenario, the initial value

of the first target described above is used.

1. The Performance of Measurement-Update
In any event when a tracking filter misses the

target, the magnitude of the deviation is arbitrary,
hence it is useless to evaluate the tracking
accuracy in this case. Even though there is no
clear definition for target missing, we define that
a track miss happens when the true measurement,
that is known in advance in the simulator, does not
appear in the gate for 20 contiguous time frames.
Measured in this way, the track maintenance ratio
(TMR) is defined as the ratio of tracks that are
the
interval. The RMS position error for the complete
Monte Carlo simulation is defined as the RMS

value of the differences between the estimated and

successfully traced during observation

true target positions for all time frames in all
successful trials.

Based on these figure-of-merits, we examine
the effect of L, for fixed ¢® and P, on the single
target scenario. For reliable statistical figures,
Monte Carlo simulation was carried out for 500
Given ¢=0.0225km?, Fig. 2 show the
simulation results with P,=(.8.

As far as TMR is concerned, PDAF is the best
of all, NNF is the poorest, and the proposed

runs.

method is in-between, though it is closer to NNF.
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Fig. 2. The performance with respect to L, given
o =0.0225km? and P,=0.8.

This fact can be expected since PDAF controls the
gate size according to the known operating
This

prominent as L, increases. However, the proposed

environment'". situation becomes more
method, together with NNF, are the best in term
of the RMS performance. As can be seen from Fig.
2, the RMS error for PDAF increases rapidly but
increases extremely slowly for the other two,
looking almost constant because the error scales
are so different. It is obvious that the optimal
condition of high TMR and low RMS error cannot
be achieved simultaneously and thus must be

compromised as in the case of the new filter.

2. The Performance of Parameter-Update

T a4

All the measurements in this experiment are
generated with the
*=0.0225km?, and P,=0.9,

particular values,
L,=0.1km % and
«=0.891 in the single target scenario. However,
rather different values are used for the initial
of the ?#=0.1km?, P,=0.8,

values filters:

L,=0.2km™% and «=0.792 to investigate the
effect of parameter-update. Also, the size of

moving average window is D = 25 time frames.

0.14
op—
true vanz E—
0.2 |ores
~.
o1 \\
0.08 \
Y
Ay
0.0 ‘.l‘..'.
s
004 < o
0.02 = Tt
° i
0 20 40 60 8 100 120
time frame
(a) Means of o2(k) and o2 (k)
@ XD MDY FF

00025 r

0.002

0.0015

0.001

0.0005

(b) Vasiances of o2(k) and a2(K)
b (Bt (D9 ¥4
o =" TR A e I
Fig. 3. The update of o and d°.

During a Monte Carlo simulation of 500 runs, we
obtained the parameter estimates for each time
frame, and calculated means and variances of the
parameters only from the parameter estimates of
the successful tracking. The variations of the

mean and variance of the estimated parameter

(592)
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over time are plotted in Figs. 3, 4, and 5.

In Fig. 3, the means and the variances of ¢2(#)

and ¢%(k) are drawn together. The true parameter
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Fig. 5. The update of the false alarm density L,.

The means of the estimates o%(# and (k)

% and the variances become

converge to 0.0176km
2.8x10 °km*. As one might notice, the estimates
are slightly biased by about 0.0049km? below the
true value. This error occurs in (36), where we
P OIETOREXCT)

discarded the term X ;572
MAR

{¢.(HR)— ¢ (R} 2D ;L)
¢.(B) is unknown and the difference ¢,(k) — ¢ (Hk)

z (k). Since the true values

seems to be negligible, it was ignored.

The mean and the variance of the gate detection
probability (k) are drawn in Fig. 4. The estimate
converges to 0.876 with variance 0.006. Also note
that « is slightly underestimated by about 0.015,
that is 1.7% of the true value.

Fig. 5 shows the adaptation performance with

respect to the false alarm density L, The mean

value converges to 0.092km ?
0.0056km~*. The bias is 0.008km~?, that is 8%

error with respect to the true value.

with variance

difficult,

because estimates are based upon other estimates

Correcting the bias seems to be
in a chain manner. Also, there are limits in
adaptation capabilities particularly in terms of

adaptation speed and parameter range.

3. The Performance of Tracking Crossing Targets

In this experiment, Wwe examine the
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parameter—update performance of the proposed
filter for the crossing target case. All the settings
are same as those of section 5.2.

Following a Monte Carlo simulation of 500 runs,
the ensemble averages and variances have been
calculated and are depicted in Figs. 6, 7, and 8. The
parameter variations for both targets are shown on
the same graphs.

The means of the estimates o4 and o%(#)

converge ta 0.018km? and 0.020km? for the both
targets. The variance of the estimates converge to
2.8x10 °km* 4.1x10"*km*. There

tendency for the average and variance of ¢%(&) to

and is a

increase slightly after the targets are cross at 80T.

time frame
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Fig. 6. The update of o2 and A2..

T 54

This observation is natural since the parameter
estimation must be influenced by nearby targets.
Incidentally, only ¢k tends to rise because the
two targets are separated in y axis.

In Fig. 7, the mean of the estimate (k) has a
+0.025 around 0.891, which

amounts to 2.8% of the true value. The variance

variation about

converges to 0.005. According to this graph, it
seems that e(k) is not affected by the event of
target crossing. Fig. 8 shows that the mean of the
LAk

crossing, that is, the filter cannot discern the

estimate increases when targets are

nearby target from the false alarms. Also, we can

observe the effect of adjacent targets when they

tme frame

() Mean of a(k)
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0.006 .

i i
60 80
time frame

(b) Variance of a(k)

b) ok ¥4t
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The update of the gate detection probability a.

a3 7.
Fig. 7.
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are approaching each other in space. There are
some errors in parameter estimation, especially

L k), when targets are crossing.

VI. Conclusion

We
following an approach based on the EM method.
We the by

introducing validation vectors as an additional

introduced an adaptive tracking filter
measurement—update

improve

observation in EM estimation. As a result, the

measurement-target association is optimally
decided under the given conditions of the
environment. The other contribution is the

introduction of parameter-update that relieves us

BEFIReRE FRH SPlR £5%
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of the need to manually decide some critical
Based on MAP, of the

parameters have been derived. In this manner, the

values. estimates
filter can track multiple targets that move in a
complicated manner and in variable environments.

The advantages of computational structures
this

recursiveness. Being fully parallel, each target can

using scheme are parallelism and

be monitored independently from the others. Even
the be

separately. Also, the computation is recursive so

system parameters can computed
that the previous state amounts to the entire
history which reduces computation drastically.
When realized in parallel for each target, only
O(MP) multiplications are needed for each target,
where M is the number of measurements and P is

the number of iterations.
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