• Title/Summary/Keyword: Surplus heat

Search Result 48, Processing Time 0.026 seconds

Empirical evaluation of the heating performance by a heat pump system with surplus heat from a greenhouse (온실 태양잉여열을 이용한 히트펌프시스템의 난방 성능평가에 관한 실증 연구)

  • Jeon, Byung-Yong;Park, Youn-Cheol;Ko, Gwang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.99-104
    • /
    • 2017
  • This study evaluated the heating performance of a hybrid heat pump system. The system was installed in a $100-m^2$ greenhouse to utilize surplus solar energy. A hybrid heat pump system was installed at Jocheon-ri, Jeju Island, for an empirical evaluation of the performance. The system consists of a heat storage tank and plate heat exchangers for several heat exchanges between the greenhouse and heat pump or storage tank. The system uses R410a as the working fluid and is controlled automatically by a defined set temperature of the greenhouse. This system incorporates two kinds of heat sources: outdoor air and a storage tank that collects heat from the topside of the greenhouse. The results showed that the heating capacity was 19.9 kW in the outdoor air source mode and 21.4 kW with direct heating from hot water in the thermal storage tank. These results are very similar to those of a previous study.

Analysis of Solar Energy Storage Using Effectiveness on Single Span Plastic Greenhouse with Water Curtain System (수막재배 단동비닐하우스의 태양열 축열이용 효과분석)

  • Lee, S.H.;Ryou, Y.S.;Moon, J.P.;Yun, N.K.;Lee, S.J.;Kim, K.W.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.200.2-200.2
    • /
    • 2010
  • This study was carried out in order to reduce the amount of underground water which is used in the water curtain system for retaining heat. To proceed to the research, two plastic green houses of water curtain system were installed. One was equipped of internal small tunnel for keeping warm air in the interior of the house. Then the internal small tunnel for keeping warm air was fitted with PVC duct of 50cm in diameter filled with subsurface water. Storing surplus solar energy in the water filled in PVC duct was the method used to this house. Another was installed with FCU in the middle of the house, and was fitted a circulation motor in water tank for heat storage which was operated from 10 a.m. to 4 p.m. in order to interchange heat with FCU. The latter was installed with four FCUs which has a capacity of 8000kcal per hour. Consequently about 5 degrees celsius could be maintained in the interior of the internal small tunnel for keeping warm air with the external temperature of more than minus 5 degrees celsius. It appeared that the alteration of an internal temperature of the house was flexible depending on the sunlight during daytime. It happened that to prevent the water from freezing, mixing antifreezing liquid in the flowing water of FCU or changing the operating method of FCU was a suitable measure. Also, in order to use the surplus solar thermal energy on plastic green house of water curtain system efficiently, storing the surplus heat during daytime simultaneously finding a method of using water curtain systematic underground water happened to be important. As a result of this research, when the house's interior temperature is below zero the operation of FCU appeared to be impossible. Therefore when supposed that the amount of water used in the house is 150~200ton for stable operation of FCU, using the system mentioned in the above research happened to be appropriate of reducing the amount of subsurface water from 80% to 100% when maintaining the interior of internal small tunnel's temperature for keeping warm air of 5 degrees celsius at the extreme temperature of minus 5 degrees celsius.

  • PDF

A Study on the Thermal Characteristics of a $MgO/H_2O$ Chemical Heat Pump ($MgO/H_2O$ 계 화학식 열펌프의 열적 특성에 관한 연구)

  • ;;;;Yukitaka Kato
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.34-41
    • /
    • 2004
  • The chemical heat pump based on the Dehydration/Hydration process with a MgO/$H_2O$ system has been researched. The reactor bed could be expected to store the heat around 200∼37$0^{\circ}C$ by the dehydration reaction and to release the heat around 100∼16$0^{\circ}C$ by the hydration reaction under the heat amplification mode operation. The heat output rate of the heat pump system was evaluated using the experimentally determined parameters. The results show that 6∼50 W/kg of heat output and 0.5∼0.8 of heat recovery ratio are attainable. The heat pump will be applicable for a load leveling in a co-generation system by chemical storage of surplus heat at low heat demand and by supplying heat in the peak load period.

Solar Energy Storage Effectiveness on Double Layered Single Span Plastic Greenhouse (2중 단동비닐하우스의 태양열 축열이용 효과)

  • Lee, Sung-Hyoun;Ryou, Young-Sun;Moon, Jong-Pil;Yun, Nam-Kyu;Kwon, Jin-Kyung;Lee, Su-Jang;Kim, Kyeong-Won
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.217-222
    • /
    • 2011
  • This study was carried out in order to reduce the amount of underground water which is used in the double layered single span plastic greenhouse for retaining heat. For this research, two plastic green houses of the double layered single span plastic greenhouse were installed. There was equipped of internal small tunnel for keeping warm air in the interior of the house. Then the internal small tunnel for keeping warm air was fitted with PVC duct of 50 cm in diameter filled with subsurface water. The surplus solar energy in the greenhouse was stored in the water in the PVC duct. Four FCUs (Fan Coil Unit), which has the capacity of 8,000 kcal per hour, were installed in the middle of the house, and a circulation motor in heat storage water tank was operated from 10:30 a.m. to 16:00 p.m. in order to circulate water between the water tank and the FCUs. Consequently about 5 degrees celsius could be maintained in the interior of the internal small tunnel for keeping warm air with the external temperature of lower than minus 5 degrees celsius. It appeared that the alteration of an internal temperature of the house was flexible depending on the sunlight during daytime. To prevent the water freezing, mixing antifreezing liquid in the water or operating FCU continuously was needed. Also, in order to use the surplus solar thermal energy on plastic green house of water curtain system efficiently, storing the surplus heat during daytime simultaneously finding a method of using water curtain systematic underground water happened to be important. As a result of this research, when the house's interior temperature is below zero the operation of FCU appeared to be impossible. Considering the amount of water used in the house with water-curtain-heating system is 150~200 ton per day, using the system mentioned in this research showed that reducing the underground water more than 80% in order to maintain the internal temperature as the level of 5 degree celsius at the extreme temperature of minus 5 degrees celsius.

Characteristic Evaluation of Weldments with Different Supply of Solid Wire in Electro Gas Welding (일렉트로 가스 용접에서 솔리드 와이어 송급량에 따른 용접부 특성 평가)

  • Bae, Sang-Deuk;Kim, Dae-Ju;Kim, Yeong-Pil;Jin, Yun-Geun;Kim, Gyeong-Ju;Kim, Dae-Sun
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.124-126
    • /
    • 2007
  • The study was performed in order to develop high efficient Electrode Gas Welding with additional solid wire by means of a surplus heat source. This technique can be reduced welding heat input in the weldments, welding speed can be increased over 30%, and mechanical properties can be more excellent than traditional method.

  • PDF

Design and Energy Performance Evaluation of Plus Energy House (플러스에너지하우스 설계 및 에너지 성능 평가)

  • Kim, Min-Hwi;Lim, Hee-Won;Shin, U-Cheul;Kim, Hyo-Jung;Kim, Hyun-Ki;Kim, Jong-Kyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.55-66
    • /
    • 2018
  • South Korea aims to shift the 20 percent of electricity supplement from the fossil fuel including the nuclear to renewable energy systems by 2030. In order to realize this agenda in the buildings, the plus energy house is necessary to increase the renewable energy supplement beyond the zero energy house. This paper suggested KePSH (KIER Energy-Plus Solar House) and energy performance of house and renewable energy systems was investigated. The KePSH has the target of generating 40% surplus energy than the conventional house energy consumption. The plus energy house is the house that generates surplus energy from the renewable energy sources than that consumes. In order to minimize the cooling and heating load of the house, the shape design and passive parameters design were conducted. Based on the experimental data of the plug load in the typical house, the total energy consumption of the house was estimated. This paper also suggested renewable energy sources integrated HVAC system using air-source heat pump system. Two cases of renewable energy system integration methods were suggested, and energy performance of the cases was investigated using TRNSYS 17 program. The results showed that the BIPV (building integrated photovoltaic) system (i.e., CASE 1) and BIPV and BIST system (i.e., CASE 2) shows 42% and 29% of plus energy rate, respectivey. Also, CASE 1 can generate 59% more surplus energy compared with the CASE 2 under the same installation area.

A Study on the Production of Hydrogen Energy According to Installed Capacity of Energy Storage System on Campus (대학 캠퍼스 내 에너지저장장치 연계에 따른 잉여 수소에너지 생산에 관한 연구)

  • Choi, Bong-Gi;Jun, Jong-Hyun;Kim, Sung-Yul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.94-99
    • /
    • 2018
  • Depending on how the energy storage system(ESS) is used in a system that can construct a microgrid by using an independent power source such as campus, surplus power can be generated that can not be charged to the ESS. For example, assuming that heat is supplied by a fuel cell in the case of a system in which thermal self-sustaining is prioritized, the fuel cell capacity required differs depending on the heat load. The amount of surplus power that can not be stored in the ESS will appear differently depending on the load operation of the fuel cell for each cycle. This power is hydrogenated through a water electrolytic device to present the amount of hydrogen energy that can be operated for each cycle. Therefore, this paper propose the possibility of utilizing University campus as a hydrogen station.

Analysis of Surplus Solar Energy in Venlo Type Greenhouse (벤로형 온실의 잉여 태양에너지 분석)

  • Choi, Man Kwon;Shin, Yik Soo;Yun, Sung Wook;Kim, Hyeon Tae;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.91-99
    • /
    • 2013
  • This research analyzed surplus solar energy in Venlo-type greenhouse using acquired typical meteorological year (TMY) data for designing a heat storage system for the surplus solar energy generated in the greenhouse during the day. In the case of paprika, the region-dependent heating loads for Jeju, Jinju, and Daegwanryong area were approximately 1,107.8 GJ, 1,010.0 GJ, and 3,118.5 GJ, respectively. The surplus solar energy measured in Jeju area was 1,845.4 GJ, Jinju area 1,881.8 GJ, and Daegwanryong area 2,061.8 GJ, with the Daegwanryong area showing 11.7% and 9.6% higher than the Jeju region and Jinju region respectively. In the case of chrysanthemums, regional heating loads were determined as 1,202.5 GJ for the Jeju region, 1,042.0 GJ for the Jinju region, and 3,288.6 GJ for the Daegwanryong region; the regional differences were similar to those for paprika. The recorded surplus solar energy was 1,435.2 GJ, 1,536.2 GJ, and 1,734.6 GJ for Jeju, Jinju, and Daegwanryong region, respectively. The Daegwanryong region recorded heating loads 20.9% and 12.9% higher than in the Jeju and Jinju region, respectively. From the above, it can be said that cultivating paprika, compared to cultivating chrysanthemums, requires less heating energy regardless of the region and tends to yield more surplus solar energy. Moreover, if the Daekwan Pass region is excluded, the surplus solar energy exceeds the energy required for heating. Although the required heating energy differs according to regions and crops, cucumbers were found to require the highest amount, followed by chrysanthemum and paprika. The amount of surplus solar energy was the highest in the case of paprika, followed by cucumber and chrysanthemum.

A study for steam energy savings by the thermal vapor recompressor (에너지절감을 위한 폐열회수용 열압축기에 대한 고찰)

  • Lee, Jae-Geun
    • Journal of the Korean Professional Engineers Association
    • /
    • v.41 no.3
    • /
    • pp.50-54
    • /
    • 2008
  • Recently most companies require various type of energy sources, in order to be more energy efficient in their plant due to the increasing current oil price. So, the multi-national companies are shaping ideas how to reduce energy costs and use substitute energy. The purpose of this study Is to attempt to save energy by making more valuable high pressure steam through TVR(Thermal Vapor Recompressor) from the surplus low pressure steam of HRB(Heat Recovery Boiler) in sulfuric acid plant.

  • PDF

An Empirical Study on the Operation of Cogeneration Generators for Heat Trading in Industrial Complexes

  • Kim, Jaehyun;Kim, Taehyoung;Park, Youngsu;Ham, Kyung Sun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.29-39
    • /
    • 2019
  • In this study, we introduce a model that satisfies energy efficiency and economical efficiency by introducing and demonstrating cogeneration generators in industrial complexes using various actual data collected at the site. The proposed model is composed of three scenarios, ie, full - time operation, scenario operated according to demand, and a fusion type. In this study, the power generation profit and surplus thermal energy are measured according to the operation of the generator, and the thermal energy is traded according to the demand of the customer to calculate the profit and loss including the heat and evaluate the economic efficiency. As a result of the study, it is relatively profitable to reduce the generation of the generator under the condition that the electricity rate is low and the gas rate is high, while the basic charge is not increased. On the contrary, if the electricity rate is high and the gas rate is low, The more you start up, the more profit you can see. These results show that even a cogeneration power plant with a low economic efficiency due to a low "spark spread" has sufficient economic value if it can sell more than a certain amount of heat energy from a nearby customer and adjust the applied power through peak management.