• Title/Summary/Keyword: Surge wave

Search Result 188, Processing Time 0.02 seconds

Wave Inundation at Mokpo Harbor (목포항에서의 풍파로 인한 범람)

  • Lee, Jung-Lyul;Kang, Juo-Hwan;Moon, Seung-Rok;Lim, Heung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.574-578
    • /
    • 2006
  • Tidal amplification by construction of the sea-dike and sea-walls had been detected not only near Mokpo Harbor but also at Chungkye Bay which is connected with Mokpo Harbor by a narrow channel. This brings about increase of tidal flat area and in particular increase of surge-wave combined runup during storms. The purpose of this study is to examine an efficient operational model that can be used by civil defense agencies for real-time prediction and fast warnings on wind waves and storm surges. Instead of using commercialized wave models such as WAM, SWAN, the wind waves are simulated by using a new concept of wavelength modulation to enhance broader application of the hyperbolic wave model of the mild-slope equation type. Furthermore, The predicting system is composed of easy and economical tools for inputting depth data of complex bathymetry and enormous tidal flats such as Mokpo coastal zone. The method is applied to Chungkye Bay, and possible inundation features at Mokpo Harbor are analyzed.

  • PDF

Beach Erosion during Storm Surge Overlapped with Tide (조위변동을 고려한 폭풍해일시의 해안침식에 관한 연구)

  • 손창배
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.6 no.2
    • /
    • pp.47-56
    • /
    • 2000
  • This paper describes a simple prediction method of beach recession induced by storm surge. In order to evaluate the severest beach erosion, it is assumed that maximum beach recession occurs at the coming of storm surge overlapped with spring tide. Consequently, total surge lev디 becomes the sum of storm surge level and tidal range. Generally, storm surge level around Korea is small compared with tidal range. Therefore total surge can be expressed as the series of surges, which have same duration as tide. Through the case studies, the author Investigates correlation between tidal range, duration, wave condition, beach slope and beach recession.

  • PDF

Characteristics of East Asian Cold Surges in the CMIP5 Climate Models (CMIP5 기후 모형에서 나타나는 동아시아 한파의 특징)

  • Park, Tae-Won;Heo, Jin-Woo;Jeong, Jee-Hoon;Ho, Chang-Hoi
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.199-211
    • /
    • 2017
  • The cold surges over East Asia can be grouped to two types of the wave-train and the blocking. Recently, the observational study proposed new dynamical index to objectively identify cold surge types. In this study, the dynamical index is applied to the simulations of 10 climate models, which participate in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Focusing on assessment of cold surge simulation, we discuss characteristic of the wave-train and blocking cold surges in the climate models. The wave-train index (WI) and the blocking index (BI) based on potential temperature anomalies at dynamical tropopause over the subarctic region, the northeast China, and the western North Pacific enable us to classify cold surges in the climate models into two types. The climate models well simulate the occurrence mechanism of the wave-train cold surges with vertical structure related to growing baroclinic wave. However, while the wave-train in the observation propagates in west-east direction across the Eurasia Continent, most of the models simulate the southeastward propagation of the wave-train originated from the Kara Sea. For the blocking cold surges, the general features in the climate models well follow those in the observation to show the dipole pattern of a barotropic high-latitude blocking and a baroclinic coastal trough, leading to the Arctic cold surges with the strong northerly wind originated from the Arctic Sea. In both of the observation and climate models, the blocking cold surges tend to be more intense and last longer compared to the wave-train type.

Wave Reflection and Transmission from Buoyant Flap Typed Storm Surge Barriers - Hydraulic Experiments (부유 플랩형 고조방파제의 파랑 반사 및 전달 - 수리실험)

  • Jeong, Shin-Taek;Kim, Jeong-Dae;Ko, Dong-Hui;Kim, Dong-Hyawn;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.238-245
    • /
    • 2008
  • To evaluate wave reflection and transmission from buoyant flap-typed storm surge barriers, hydraulic experiments were performed by using regular and irregular wave conditions. Buoyant flap-typed storm surge barriers consist of buoyant main body connected with foundation structure in the seabed by hinge. The characteristics of wave reflection, transmission and dynamic response of the structure were investigated for 36 regular and 4 irregular wave conditions. It was also evaluated the usage of plain plate attached on the buoyant main body as one of alternatives to control wave reflection and transmission. From the hydraulic experiments, it was found that the case of plain plate attached on the offshore side is very effective to improve the wave transmission as well as reflection. But, the effect of the case on the harbor side might be negligible.

Development of the Combined Typhoon Surge-Tide-Wave Numerical Model 2. Verification of the Combined model for the case of Typhoon Maemi (천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 2. 태풍 매미에 의한 해일-조석-파랑 모델의 정확성 검토)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.79-90
    • /
    • 2009
  • This paper presents the development of dynamically combined Typhoon generated surge-tide-wave numerical model which is applicable from deep to shallow water. The dynamically coupled model consists of hydrodynamic module and wind wave module. The hydrodynamic module is modified from POM and wind wave module is modified from WAM to be applicable from deep to shallow water. Hydrodynamic module computes tidal currents, sea surface elevations and storm surges and provide these information to wind wave module. Wind wave mudule computes wind waves and provides computed information such as radiation stress, sea surface roughness and shear stress due to winds. The newly developed model was applied to compute the surge, tide and wave fields by typhoon Maemi. Verification of model performance was made by comparison of measured waves and tide data with simulated results.

Development of the Combined Typhoon Surge-Tide-Wave Numerical Model Applicable to Shallow Water 1. Validation of the Hydrodynamic Part of the Model (천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 1. 해수유동 모델의 정확성 검토)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.63-78
    • /
    • 2009
  • This paper presents the development of dynamically combined Typhoon generated surge-tide-wave numerical model which is applicable to shallow water. The newly developed model is based on both POM (Princeton Ocean Model) for the surge and tide and WAM (WAve Model) for wind-generated waves, but is modified to be applicable to shallow water. In this paper which is the first paper of the two in a sequence, we verified the accuracy and numerical stability of the hydrodynamic part of the model which is responsible for the simulation of Typhoon generated surge and tide. In order to improve the accuracy and numerical stability of the combined model, we modified algorithms responsible for turbulent modeling as well as vertical velocity computation routine of POM. Verification of the model performance had been conducted by comparing numerical simulation results with analytic solutions as well as data obtained from field measurement. The modified POM is shown to be more accurate and numerically stable compare to the existing POM.

Hydraulic Characteristic Analysis of Buoyant Flap Typed Storm Surge Barrier using FLOW-3D model (FLOW-3D 모형을 이용한 부유 플랩형 고조방파제의 수리학적 특성 분석)

  • Ko, Dong Hui;Jeong, Shin Taek;Kim, Jeong Dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.140-148
    • /
    • 2014
  • A storm surge barrier is a specific type of floodgate, designed to prevent a storm surge or spring tide from flooding the protected area behind the barrier. A surge barrier is almost always part of a larger flood protection system consisting of floodwalls, dikes, and other constructions. Surge barriers allow water to pass under normal circumstances but, when a (storm) surge is expected, the barrier can be closed. Among the various means of closing, buoyant flap typed storm surge barrier which was indicated by MOSE project in Italy is chosen for Masan bay protection, and the motion of the surge barrier under the action of storm surge and wave is examined using FLOW-3D, a computational fluid dynamics software analyzing various physical flow processes. Numerical result shows that storm surge barrier is successfully operated under wave height 3 m, and tidal range 2 m.

Unsteady Pressure Distributions in a Channel Diffuser of Centrifugal Compressor (원심압축기 채널디퓨저 내부의 비정상 압력분포)

  • Kang, Jeong-Seek;Cho, Sung-Kook;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.57-65
    • /
    • 2000
  • The aim of this paper is to understand the unsteady flow phenomena in a high speed centrifugal compressor channel diffuser. Instantaneous pressures aye measured at six locations in the diffuser using fast-response pressure transducers. Instantaneous pressure ratio decomposition was applied to analyze the pressure signal. In vaneless space where impeller-vaned diffuser interaction is strong, aperiodic unsteadiness is high and periodic pressure waveforms by blade passing are not clear at low flow rates, especially near vane suction side. High aperiodic unsteadiness decreases downstream of diffuser. The blade-to-blade pressure wave does not disappear in surge flow condition. In surge there exist not only large scale periodic surge wave but also blade-to-blade pressure wave.

  • PDF

Unsteady Pressure Distributions in a Channel Diffuser of Centrifugal Compressor (원심압축기 채널디퓨저 내부의 비정상 압력분포)

  • Kang, Jeong-Seek;Cho, Sung-Kook;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.69-77
    • /
    • 1999
  • The aim of this paper is to understand the unsteady flow phenomena in a high speed centrifugal compressor channel diffuser. Instantaneous pressures are measured at six locations in the diffuser using fast-response pressure transducers. Instantaneous pressure ratio decomposition was applied to analyze the pressure signal. In vaneless space where impeller-vaned diffuser interaction is strong, aperiodic unsteadiness is high and periodic pressure waveforms by blade passing are not clear at low flow rates, especially near vane suction side. High aperiodic unsteadiness decreases downstream of diffuser. The blade-to-blade pressure wave does not disappear in surge flow condition. In surge there exist not only large scale periodic surge wave but also blade-to-blade pressure wave.

  • PDF

Analysis of Reliability of Weather Fields for Typhoon Sanba (1216) (태풍 기상장의 신뢰도 분석: 태풍 산바(1216))

  • Kwon, Kab Keun;Jho, Myeong Hwan;Ryu, Kyong Ho;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.465-480
    • /
    • 2020
  • Numerical simulations of the storm surge and the wave induced by the Typhoon Sanba incident on the south coast of Korea in 2012 are conducted using the JMA-MSM forecast weather field, NCEP-CFSR reanalysis weather field, ECMWF-ERA5 reanalysis weather field, and the pressure and wind fields obtained using the best track information provided by JTWC. The calculated surge heights are compared with the time history observed at harbors along the coasts of Korea. For the waves the calculated significant wave heights are compared with the data measured using the wave buoys and the underwater pressure type wave gauge. As a result the JMA-MSM and the NCEP-CFSR weather fields give the highest reliability. The ECMWF-ERA5 gives in general surge and wave heights weaker than the measured. The ECMWF-ERA5, however, reproduces the best convergence belt formed in front of the typhoon. The weather field obtained using JTWC best track information gives the worst agreement.