• Title/Summary/Keyword: Surge characteristics

Search Result 457, Processing Time 0.028 seconds

Electrical Characteristics of ZnO element to Surge protector for 154kC Underground Cable (154kV 지중케이블 서지 보호장치용 ZnO 소자의 전기적 특성)

  • 조한구;한동희;김석수;이종혁;장태봉
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1054-1056
    • /
    • 2001
  • This paper deals with underground transmission system of present and ZnO element of newly developed. in the characteristics of ZnO element of newly developed, an newly developed ZnO element compared with previous ZnO element that electrical characteristics and external characteristics. In result, characteristics of newly developed ZnO element is improved than previous one.

  • PDF

Simulated Analysis for the Transient Impedance Behaviors of Counterpoises Subjected to the Impulsive Currents (임펄스전류에 의한 매설지선의 과도임피던스특성에 대한 모의해석)

  • Joe, Jeong-Hyeon;Lee, Bok-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1861-1868
    • /
    • 2009
  • A ground electrode subjected to lightning surge current shows the transient impedance behaviors. The ground electrode for protection against lightning should be evaluated in view of the transient grounding impedance and conventional grounding impedance, not ground resistance. The transient impedance characteristics of ground electrodes are influenced by the shape of ground electrode and the soil characteristics, as well as the waveform of lightning surge current. In order to propose a simulation method of analyzing the transient impedance characteristics of the grounding system in practical use, this paper suggests a theoretical analysis method of distributed parameter circuit model to simulate the transient impedance characteristics of counterpoise subjected to lightning surge current. EMTP and Matlab programs were employed to compute the transient grounding impedances of three counterpoises with different lengths. As a consequence, the simulated results using the proposed distributed parameter circuit model are in good agreement with the measured results.

The Method of Reinforcing the Immunity of Residual Current Circuit Breaker for the EMC Composite Surge (누전차단기의 EMC 조합서지 내성 강화를 위한 방안)

  • Kim Jae-Chul;Han Yoon-Tak;Kim Oun-Seok;Seol Kyu-Hwan;Kang Jang-Kyou;Moon Jong-Fil
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.8
    • /
    • pp.322-328
    • /
    • 2006
  • In this paper, The impulse un-tripping characteristics and the electro magnetic compatibility characteristics are compared with each other. The performance of impulse un-tripping test exists at domestic standard (KSC 4613). However test items are insufficient because the more test items such as EMC exist at international standard (IEC). Also, Electric Appliances Safety Certificate has taken the certificate test since July 2004 in Korea but did not confirm the EMC performance for RCCBs made in Korea. Thus, in this paper, We experiment with Oscillatory waves immunity test and the 7 EMC tests for 32 RCCBs of 4 types (mini, home standard, plug, outlet) for 16 brands according to IEC standard 61009-1 and 61008-1. As a result, 24 RCCBs proved to be poor for surge immunity test. However the RCCBs operating incorrectly for surge immunity test operate correctly for oscillatory waves immunity test. Thus, the correlation between oscillatory waves immunity test and EMC test is little and standard for compatibility of combination surge at IEC 61000-4-5 should be added to KS standard as soon as possible.

Effect of Sintering lime on Electrical Stability against Surge Stress of Zn-Pr-Co-Cr-Y Oxide-based Varistors (Zn-Pr-Co-Cr-Y 산화물계 바리스터의 써지 스트레스에 대한 전기적 안정성에 소결시간의 영향)

  • Nahm, Choon-Woo;Park, Jong-Ah;Yoo, Dea-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.615-621
    • /
    • 2005
  • The electrical stability against surge stress of varistors, which are composed of Zn-Pr-Co-Cr-Y oxide system, were investigated at different sintering times. As sintering time increases, the varistor voltage and nonlinear exponent decreased in the range of $279.6\~179.1$ and $52.5\~24.9$, respectively. On the contrary, the leakage current and dielectric dissipation factor increased in the range of $1.2\~9.8\;{\mu}A$ and 0.0461\~0.0651 with increase of sintering time. For all varistors, the variation rates of V-I characteristic parameters against surge stress were more strongly affected in order of varistor voltage ${\rightarrow}nonlnear$ $exponent{\rightarrow}leakage$ current. On the whole, the electrical stability against surge stress increased with increasing sintering time. Conclusively, it is assumed that the varistors sintered for 2 h exhibited comparatively good characteristics, in view of overall characteristics.

Patterns of Water Level Increase by Storm Surge and High Waves on Seawall/Quay Wall during Typhoon Maemi (태풍 매미 내습시 해일$\cdot$고파랑에 의한 호안$\cdot$안벽에서의 수위증가 패턴 고찰)

  • Kang, Yoon-Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.22-28
    • /
    • 2005
  • We investigated the characteristics of the overflow/wave overtopping, induced by the storm surge and high waves in Masan bay and Busan Coast during Typhoon 'Maemi', which landed at the southeast coast of the Korean peninsula on September, of 2003, causing a severe inundation disaster. Characteristics of the water level, increase by the overflow / wave overtopping, were discussed in two patterns. One is the increase of water level in the region, located inside of a bay, like Masan fishing port, and the waves are relatively small. The other is in the open sea, in which the waves act directly, as on the seawall in Suyong bay. In the former region, the water level increase was affected by the storm surge, as well as the long period oscillation and waves. In Masan fishing port, about $80\%$ of the water level increase on the quay wall was caused by the storm surge. In the latter one, it was greatly affected by the wave run-up. In Suyong bay, about $90\%$ of the water level increase on the seawall was caused by the wave run-up.

Analysis of the Protective Distance of Low-Voltage Surge Protective Device(SPD) to Equipment (저압용 서지 보호 장치(SPD)의 보호 거리 해석)

  • Lee, Jung-Woo;Oh, Yong-Taek
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.28-34
    • /
    • 2012
  • Installing surge protection devices for a low-voltage system is important to ensure the survival of electric or electronic devices and systems. If surge protection devices (SPD) are installed without consideration of the concept of lightning protection zones, the equipment to be protected might be damaged despite the correct energy coordination of SPDs. This damage is induced by the reflection phenomena on the cable connecting an external SPD and the load protected. These reflection phenomena depend on the characteristics of the output of the external SPD, the input of the loads, and the cables between the load and the external SPD. Therefore, the SPD has an effective protection distance under the condition of the specific load and the specific voltage protection level of SPD. In this paper, PSCAD/EMTDC software is used to simulate the residual voltage characteristics of SPD Entering the low-voltage device. And by applying a certain voltage level, the effective protection distances of SPD were analyzed according to the each load and length of connecting cable, and the effectiveness of SPD were verified.

The Performance Characteristics of Anti-Surge Devices for High Head Cooling Water Systems in 1,000 MW Thermal Power plants (고수두 1,000 MW 석탄화력발전소 냉각수계통 수격방지장치의 성능특성)

  • Kim, Keun-Pil;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.4
    • /
    • pp.36-42
    • /
    • 2019
  • In recent, according to the tightening of environment regulation policy, the height of the site of the power plant is increased and the length of the cooling water pipe is increased. This has a serious impact on the stability of the plant. This study analyzes the transient phenomenon using LIQT 7.2, an unsteady state one-dimensional analysis software, to secure the stability of 1,000 MW high-capacity coal-fired power plant cooling water system with high head. To prevent water hammer, The effects on performance characteristics were predicted by individual and combination application. The surge pressure of the cooling water which occurs when the pump was stopped without installing the anti-surge devices was the largest at the pump outlet side. The most effective and simple way to reduce surge pressure in these cooling water systems is to combine a vacuum breaker with a hydraulic non-return valve, which is an essential device for pump protection.

Electrical Properties of 18[kV] ZnO Surge Arrester Stressed by the Mixed DC and 60[Hz] AC Voltages (직류+60[Hz]교류 중첩전압에 대한 18[kV] ZnO 피뢰기의 전기적 특성)

  • Lee, Su-Bong;Lee, Seung-Ju;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.66-72
    • /
    • 2007
  • This paper describes the characteristics of power loss and leakage currents flowing through new and used 18[kV] zinc oxide(ZnO) surge arrester under the mixed DC and AC voltages. The mixed DC and AC voltage generator of 50[kV] peak was designed and fabricated. The I-V curves of ZnO surge arrester were measured as a function of the voltage ratio K. The I-V curves under the mixed DC and AC voltages lay between the pure DC and AC characteristics, and the cross-over phenomenon in both I-V curves and R-V curves was observed at the low current region. As a result, the increase of DC component in the mixed voltages causes the increase of resistive component of total leakage current of ZnO surge arrester. Also, in the case of same applied voltage, the leakage current flowing through the used ZnO surge arrester was higher than that of the new ZnO surge arrester.

Characteristics of Atmospheric Circulation and Heat Source related to Winter Cold Surge in Korea (한반도 겨울철 한파와 관련된 대기 순환과 열원의 특성)

  • Kim Maeng-Ki;Shin Sung-Chul;Lee Woo-Seop
    • Journal of the Korean earth science society
    • /
    • v.26 no.6
    • /
    • pp.560-572
    • /
    • 2005
  • This study investigates the characteristics of atmospheric circulation and the heat source $(Q_1)$ related to the winter cold surge in Korea from 1979 to 1999. The occurrence frequency of cold surge is about one event per year and $60\%$ of the total events occurred during the former period, before 1989. During the cold surge, the pressure pattern shows more dominant east-west dipole circulation pattern in the lower troposphere and the effect of upper level trough is stronger than normal cases. Temperature falling pattern over Korea shows that the pattern opposite to the temperature structure over Lake Baikal and temperature change has opposite signs between the low-middle level and upper level, with the boundary at 400 hPa. The analysis of heat source shows that atmospheric cooling by cold advection during the cold surge is balanced by adiabatic warming due to downward motion, indicating that the movement path of cold core is associated with that of heat sink. Therefore, the movement mechanism of the heat source and sink should be well known for understanding the maintenance mechanism of cold surge and predicting cold surges.

Failure Prediction of Metal Oxide Varistor Using Nonlinear Surge Look-up Table Based on Experimental Data

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.317-322
    • /
    • 2015
  • The metal oxide varistor (MOV) is a major component of the surge protection devices (SPDs) currently in use. The device is judged to be faulty when fatigue caused by the continuous inflow of lightning accumulates and reaches the damage limit. In many cases, induced lightning resulting from lightning strikes flows in to the device several times per second in succession. Therefore, the frequency or the rate at which the SPD is actually exposed to stress, called a surge, is outside the range of human perception. For this reason, the protective device should be replaced if it actually approaches the end of its life even though it is not faulty at present, currently no basis exists for making the judgment of remaining lifetime. Up to now, the life of an MOV has been predicted solely based on the number of inflow surges, irrespective of the magnitude of the surge current or the amount of energy that has flowed through the device. In this study, nonlinear data that shows the damage to an MOV depending on the count of surge and the amount of input current were collected through a high-voltage test. Then, a failure prediction algorithm was proposed by preparing a look-up table using the results of the test. The proposed method was experimentally verified using an impulse surge generator