• Title/Summary/Keyword: Surface-modified membrane

Search Result 175, Processing Time 0.024 seconds

Fabrication of Nonconductive Microscale Patterns on Ion Exchange Membrane by Laser Process (레이저 가공을 이용한 이온교환막 표면의 비전도성 마이크로 패턴의 제작)

  • Jinwoong Choi;Myeonghyeon Cho; Bumjoo Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.71-76
    • /
    • 2023
  • The electroconvection generated on the surface of an ion exchange membrane (IEM) is closely related to the electrical/chemical characteristics or topology of the IEM. In particular, when non-conductive regions are mixed on the surface of the IEM, it can have a great influence on the transfer of ions and the formation of nonlinear electroconvective vortices, so more theoretical and experimental studies are necessary. Here, we present a novel method for creating microscale non-conductive patterns on the IEM surface by laser ablation, and successfully visualize microscale vortices on the surface modified IEM. Microscale (~300 ㎛) patterns were fabricated by applying UV nanosecond laser processing to the non-conductive film, and were transferred to the surface of the IEM. In addition, UV nanosecond laser process parameters were investigated for obvious micro-pattern production, and operating conditions were optimized, such as minimizing the heat-affected zone. Through this study, we found that non-conductive patterns on the IEM surface could affect the generation and growth of electroconvective vortices. The experimental results provided in our study are expected to be a good reference for research related to the surface modification of IEMs, and are expected to be helpful for new engineering applications of electroconvective vortices using a non-conductive patterned IEM.

Improved Copper Ion Recovery Efficiency through Surface Modification of Membranes in the Electrodialysis/Solvent Extraction Process (전기투석/용매추출 공정에서 멤브레인 표면 개질을 통한 구리 이온의 회수 효율 향상)

  • Joongwon, Park;Rina, Kim;Hyunju, Lee;Min-seuk, Kim;Hiesang, Sohn
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.486-495
    • /
    • 2022
  • This study presents the improved recovery efficiency of rare metal ions through the modified separation membrane wettability and hydrogen ion permeation in the anion exchange membrane (AEM) under the recovery process of combined electrodialysis and solvent extraction. Specifically, the wettability of the separator was enhanced by hydrophilic modification on one separator surface through polydopamine (PDA) and lipophilic modification on the other surface through SiO2 or graphene oxide (GO). In addition, the modified surface of AEM with polyethyleneimine (PEI), PDA, poly(vinylidene fluoride) (PVDF), etc. reduces the water uptake and modify the pore structure for proton ions generation. The suppressed transport resulted in the reduced hydrogen ion permeation. In the characterization, the surface morphology, chemical properties and composition of membrane or AEM were analyzed with Scanning Electron Microscopy (SEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). Based on the analyses, improved extraction and stripping and hydrogen ion transport inhibition were demonstrated for the copper ion recovery system.

Comparison of the Proliferation pattern of Cultured Rat Calvaria Cell on the Resorbable Barrier Membrane (흡수성 차폐막에 배양된 구개관세포의 증식양상의 비교)

  • Lee, Chang-Hoon;Lee, Man-Sup;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.2
    • /
    • pp.193-213
    • /
    • 2003
  • The purpose of this study is to evaluate the phenomenon of attachment and spreading of the cultured rat calvarial cell inoculated on their surface of different kinds of biodegradable membrane which had been used on tissue regeneration on periodontal defects by using scanning electron microscope. In this experiment 30 Sprague-Dawley male rats (mean BW 150gm) were used to harvest abundant number of cell in the short period. The rats were sacrificed by decapitatioan to obtain the calvaria for bone cell culture. Calvarial cells were cultured with Dulbecco's Modified Essential Medium contained with 10% Fetal Bovine Serum under the conventional conditions. Biodegradable barrier membrane were collected with collagen type, and were divided into 3 different kind of surface such as scattered, polarized and fine-net type as their surface texture. Microcover plate which usually used for cell culture was used as control for smooth surface. All the membrane were seeded with cultured calvarial cell on their surface. The number of cell inoculated on the membrane were $1{\times}10^6$ Cells/ml. After the culture as designed time, all the membrane were washed with 0.1 M Phosphate Buffered saline and fuxed with 2.5% Glutaraldehyde. And all specimen were treated with $OsO_4$, and Tannic acid before drying the cell for coating the cell with gold. Scanning Electron Microscope was used to observation. The following results were obtained. I. During the whole period of experiment, the phenomenon of cell attachment and spreading were revealed similar pattern to compare with smooth surface culture plate and ordinary culture dish. 2. The shape of cell attachment and spreading on the surface of barrier membrane were observed no remarked difference pattern between smooth surface culture plate and ordinary culture dish. 3. The cytoplasmic process of cultured calvaria cell extent to the deep portion of barrier membrane like as their own proper shape. 4. There were no remarkable relationships between the degree of cultured cell spreading and surface structure of barrier membrane. 5. Slight starified layer of cultured calvaria cell were observed on the scattered type of resorbable membrane, Conclusively, this study thus suggest that cultured bone cell inoculated onto the biodegradable barrier membrane may have an important role of carrier for many cell which could be used as new tissue regeneration, and those tissue engeering technique may become an new method in the approach to the repair of bone defects.

Preparation and characteristics of inorganic membrane for air dehumidification (공기 제습용 무기막의 제조 및 특성)

  • Kim, Jeong-Eun;Kim, Byoung-Moon;Song, Kun-Ho;Chang, Wha-lk;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.157-162
    • /
    • 2006
  • Recently, the humidity adjustment of indoor air is of great importance in air conditioning system as a applied, in buildings, vehicles, and containers for storage and transport of perishable products. Membrane dehumidification or air is potentially attractive because it offers low capital and operating costs, along with low energy consumption. And membrane dehumidification process attracted the attention of the public instead of the other dehumidification processes, such as adsorption, absorption, and refrigeration cycles and so on. In this study, the prepared hydrophilic inorganic membrane-based dehumidifiers(membrane air dehumidification) examined the performance of dehumidification. The surface-modified inorganic membrane prepared in this study showed high dehumidification efficiency(over 80%). The membrane might be very useful for dehumidification industries.

  • PDF

Hydrophobic modification of PVDF hollow fiber membranes using polydimethylsiloxane for VMD process

  • Cui, Zhaoliang;Tong, Daqing;Li, Xue;Wang, Xiaozu;Wang, Zhaohui
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.251-257
    • /
    • 2019
  • Fabricating hydrophobic porous membrane is important for exploring the applications of membrane distillation (MD). In the present paper, poly(vinylidene fluoride) (PVDF) hollow fiber membrane was modified by coating polydimethylsiloxane (PDMS) on its surface. The effects of PDMS concentration, cross-linking temperature and cross-linking time on the performance of the composite membranes in a vacuum membrane distillation (VMD) process were investigated. It was found that the hydrophobicity and the VMD performance of the PVDF hollow fiber membrane were obviously improved by coating PDMS. The optimal PDMS concentration, cross-linking temperature and cross-linking time were 0.5 wt%, $80^{\circ}C$, and 9 hr, respectively.

Effect of MWCNTs/PSf support layer on the performance of polyamide reverse osmosis membrane (탄소나노튜브가 첨가된 폴리술폰 지지체가 폴리아미드 역삼투막의 성능에 미치는 영향)

  • Min, Choong-Sik;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.127-137
    • /
    • 2020
  • In this study, a MWCNT(multi-wall carbon nanotube) was added to polysulfone(PSf) support layer to improve flux of TFC(thin film composite) RO(reverse osmosis) membrane. Two different kinds of MWCNT were used. Surfaces of some MWCNTs were modified hydrophilically through acid treatment, while those of other MWCNTs were modified through heat treatment to maintain their hydrophobicity. MWCNT/PSf support layer was prepared by adding PSf to the NMP mixed solvent containing 0.1 wt% MWCNTs using a phase inversion method. The surface porosity of the MWCNT/PSf support increased by 42~46% while its surface pore size being maintained. The TFC RO membrane made of MWCNT/PSf support layer showed a 20% flux increase while its salt rejection characteristics is sustained. In addition, the MWCNT/PSf support layer has better mechanical stability than the PSf support layer, there resulting in an increased resistance of flux reduction due to physical pressure.

Effect of Plasma Treatment on Permeability and Selectivity Characteristics of Mixture Gas through Polyimide Membrane (플라즈마 처리된 폴리이미드 막의 기체투과특성)

  • 배성렬;노상호;류대선;박희진
    • Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.38-49
    • /
    • 2001
  • The surface of polyimide membrane was modified by plasma treatment using Ar and NH~. and the permeability and selectivity for the mixture gas $(CO_2/N_2=20/80 vol%)$ were measured. The per¬meation experiments were performed by a variable volume method at $30^{\circ}$C and total pressure of 5 atm, The effect of the plasma conditions such as treatment time, power input, gas flow rate and pressure in the reactor on the transport Dwperties of modified membranes was investigated. The surface of the plasma treated membrane was analyzed by means of FTlR - ATH, ESCA and AFM. The dependences of the wettability and the etching on plasma treatment time were investigated by use of the contact angle and the weight loss measurement. Measurements of gas pcnneability characteristic were performed using both dry and wet membranes. The effects of experimental conditions such as temperature on the membrane performance were studied.

  • PDF

Preparation and Characteristics of Fouling Resistant Nanofiltration Membranes (내오염성 나노여과막의 제조 및 특성)

  • Kim, No-Won
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.44-53
    • /
    • 2007
  • The primary objective of this study is to increase the extent of water flux and fouling resistance of nano-filtration or reverse osmosis membranes. This study was performed to investigate the effect of surface characteristics of silane coated membranes on modified fouling index. Commercial polyamide composite RO membrane (RE1812-LP) and NF membrane (ESNA4040-LF) were treated with silane coupling agents in ethanol at five different concentrations. The silane coupling reagent, aminopropylmethoxydiethoxysilane, contains one aminoalkyl and three alkoxy groups. The hydrophilic effect of aminoalkyl group of APMDES on the permeability and fouling resistance of the modified membrane was examined. The surfaces of the modified membranes were characterized by FE-SEM, contact angle analyzer, and zeta potentiometer in order to confirm successful sol-gel methods. The modified NF membranes showed significantly enhanced water flux and fouling resistance without a decrease in salt rejection in divalent ionic feed solution.

Hydrophilic Modification of Polypropylene Hollow Fiber Membrane by Dip Coating, UV Irradiation and Plasma Treatment

  • Kim Hyun-Il;Kim Jin Ho;Kim Sung Soo
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • PP hollow fiber membrane was hydrophilized by EVOH dip coating followed by low temperature plasma treatment and UV irradiation. EVOH coating attained high water flux without any prewetting but its stability did not guaranteed at high water permeation rate. At high water permeation rate, water flux declined gradually due to swelling and delamination of the EVOH coating layer causing pore blocking effect. However, plasma treatment reduces the swelling, which suppress delamination of the EVOH coating layer from PP support result in relieving the flux decline. Also, UV irradiation helped the crosslinking of the EVOH coating layer to enhance the performance at low water permeation rate. FT-IR and ESCA analyses reveal that EVOH dip coating performed homogeneously through not only membrane surface but also matrix. Thermogram of EVOH film modified plasma treatment and W irradiation show that crosslinking density of EVOH layer increased. Chemical modification by plasma treatment and UV irradiation stabilized the hydrophilic coating layer to increase the critical flux of the submerged membrane.

Cell Separation through chemically modified polyurethane membranes

  • Akon Higuchi;Ryoko Hayashi;Yamamiya, Shin-ichi;Hanako Kitamura
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.55-58
    • /
    • 2004
  • Cell separation from peripheral blood was investigated using surface-modified polyurethane (PU) membranes with different functional groups. Both red blood cells and platelets could pass through unmodified PU and PU-SO$_3$H membranes, while the red blood cells preferentially passed through PU-N(C$_2$H$_{5}$ )$_2$ and PU-NHC$_2$H$_4$OH membranes. The permeation ratio of T and B cells was less than 25% for the surface-modified and unmodified PU membranes. CD34$^{+}$ cells have been recognized as various kinds of stem cells including hematopoietic and mesenchymal stem cells. The adhesiveness of CD34$^{+}$ cells on the PU membranes was found to be higher than that of red blood cells, platelets, T cells or B cells. Overall, the adhesiveness of blood cells on the PU membranes increased in the following order: red blood cells $\leq$ platelets < T cells $\leq$ B cells < CD34$^{+}$ cells. Treatment of PU-COOH membranes with a human albumin solution to detach adhered blood cells, allowed recovery of mainly CD34$^{+}$ cells in the permeate, while both red blood cells and platelets could be isolated in the permeate using unmodified PU membranes. The PU membranes showed different permeation and recovery ratios of specific cells depending on the functional groups attached to the membranes.mbranes.

  • PDF