• Title/Summary/Keyword: Surface-coated materials

Search Result 1,139, Processing Time 0.032 seconds

Effect of Sealing on the Corrosion Resistance of Plasma-Sprayed Alumina Coatings (실링이 플라즈마 스프레이 코팅된 알루미나 코팅재의 내부식성에 미치는 영향)

  • Kwon, Eui Pyo;Kim, Se Woong;Lee, Jong Kweon
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.442-447
    • /
    • 2022
  • Sealing treatment is a post-surface treatment of the plasma spray coating process to improve the corrosion resistance of the coating material. In this study, the effect of the sealing on the corrosion resistance and adhesive strength of the plasma spray-coated alumina coatings was analyzed. For sealing, an epoxy resin was applied to the surface of the coated specimen using a brush. The coated specimen was subjected to a salt spray test for up to 48 hours and microstructural analysis revealed that corrosion in the coating layer/base material interface was suppressed due to the resin sealing. Measurement of the adhesive strength of the specimens subjected to the salt spray test indicated that the adhesive strength of the sealed specimens remained higher than that of the unsealed specimens. In conclusion, the resin sealing treatment for the plasma spray-coated alumina coatings is an effective method for suppressing corrosion in the coating layer/base material interface and maintaining high adhesive strength.

Effect of Ultrathin Film HfO2 by Atomic Layer Deposition on the Propreties of ZnS:Cu,Cl Phosphors (ZnS:Cu,Cl 형광체의 특성에 미치는 원자층 증착 초박막 HfO2의 영향)

  • Kim, Min-Wan;Han, Sand-Do;Kim, Hyung-Su;Kim, Hyug-Jong;Kim, Hyu-Suk;Kim, Suk-Whan;Lee, Sang-Woo;Choi, Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.248-252
    • /
    • 2006
  • An investigation is reported on the coating of ZnS:Cu,Cl phosphors by $HfO_2$ using atomic layer deposition method. Hafnium oxide films were prepared at the chamber temperature of $280^{\circ}C$ using $Hf[N(CH_3)_2]_4\;and\;O_2$ as precursors and reactant gas, respectively. XPS and ICP-MS analysis showed the surface composition of coated phosphor powder was hafnium oxide. In FE-SEM analysis, the surface morphology of uncoated phosphors became smoother and clearer as the number of ALD cycle increased from 900 to 1800. The photoluminescence intensity for coated phosphors showed $7.3{\sim}13.4%$ higher than that of uncoated. The effect means that the reactive surface is uniformly coated with stable hafnium oxide to reduce the dead surface layer without change of bulk properties and also its absorptance is almost negligible due to ultrathin(nano-scaled) films. The growth rate is about $1.1{\AA}/cycle$.

Solution deposition planarization for IBAD-MgO texture template

  • Ko, Kyeong-Eun;Kwon, O-Jong;Bea, Sung-Hwan;Yoo, Ja-Eun;Park, Chan;Oh, Sang-Soo;Park, Young-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.17-19
    • /
    • 2010
  • In this work, the optimized process condition of chemical solution deposition which is used to planarize the surface of the metal tape (which is used to grow IBAD-MgO texture template) was investigated. $Y_2O_3$ films were dip-coated on the surface of the unpolished metal tape as the seed and barrier layer. The effects of $Y_2O_3$ concentration of the solution (0.5wt.%, 1.3wt.%, 2.8wt.%, 5.6wt.%) and the number of coatings on the surface morphology and barrier capability against the diffusion from the metal tape were examined. The surface morphology and the thickness of the film were observed using the scanning electron microscope and the atomic force microscope. The presence of elements in metal tape on the film surface was analyzed using the auger electron spectroscopy. The $Y_2O_3$ film thickness increases with increasing the $Y_2O_3$ concentration in the solution, and the surface became smoother with increasing the number of coating cycles. The best result was obtained from the $Y_2O_3$ film coated 4 cycles using 2.8wt.% solution.

CLINICAL STUDY OF ENDOSSEOUS HYDROXYAPATITE COATED IMPLANTS (수종의 Hydroxyapatite coated 골유착성 임프란트의 임상적 연구)

  • Han, Chong-Hyun;Kim, Sung-Hyun;Chul, Jong-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.631-639
    • /
    • 2000
  • Root-form endosseous implants which are in use today have a variety of materials, designs and surface characteristics. Among them, pure titanium surface implants and titanium matrix coated with HA are popular as well as are available in many studies. Rate of clinical success is obviously lower in jaw with cancellous bone than dense bone. In order to increase the rate of success in poor bone quality. More advanced techniques of implant surgery and surface treatment of implant fixture body have been developed. As a successful result, the installation of HA coated implant in bone quality type III or IV became highly successful. Since most clinical studies were performed without knowing the characteristics of HA coated implants, it has been impossible to come up with proper clinical data. Therefore the characterization of HA coated implants is essential to understand long term clinical performance and the predictability of HA coated implant system Our results showed that HA coated implants had the success rate at 93.7% in bone quality type III, IV for 3.8 years, and the fixture of Steri-Oss showed more stability with time.

  • PDF

Enhanced Field Electron Emission from Dielectric Coated Highly Emissive Carbon Fibers

  • Almarsi, Ayman M.;Hagmann, Mark J.;Mousa, Marwan S.
    • Applied Microscopy
    • /
    • v.47 no.1
    • /
    • pp.55-62
    • /
    • 2017
  • This paper describes experiments aimed at characterizing the behavior of field electron emitters fabricated by coating carbon fibers with epoxylite resin. Polyacrylonitrile carbon fibers of type VPR-19, thermally treated at $2,800^{\circ}C$, were used. Each was initially prepared in a "uncoated" state, by standard electro polishing and cleaning techniques, and was then examined in a scanning electron microscope. The fiber was then baked overnight in a field electron microscope (FEM) vacuum chamber. Current-voltage characteristics and FEM images were recorded on the following day or later. The fiber was then removed from the FEM, coated with resin, "cured" by baking, and replaced in the FEM. After another overnight bake, the FEM characterization measurements were repeated. The coated fibers had significantly better performance than uncoated fibers. This confirms the results of earlier experiments, and is thought to be due in part to the formation of a conducting channel in the resin over layer. For the coated fiber, lower voltages were needed to obtain the same emission current. The coated fibers have current-voltage characteristics that show smoother trends, with greater stability and repeatability. No switch-on phenomena were observed. In addition, the emission images on the phosphor-coated FEM screen were more concentrated, and hence brighter.

A Study on the Improvement of Tool's Life by Applying DLC Sacrificial Layer on Nitride Hard Coated Drill Tools (드릴공구의 이종질화막상 DLC 희생층 적용을 통한 공구 수명 개선 연구)

  • Kang, Yong-Jin;Kim, Do Hyun;Jang, Young-Jun;Kim, Jongkuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.271-279
    • /
    • 2020
  • Non-ferrous metals, widely used in the mechanical industry, are difficult to machine, particularly by drilling and tapping. Since non-ferrous metals have a strong tendency to adhere to the cutting tool, the tool life is greatly deteriorated. Diamond-like carbon (DLC) is one of the promising candidates to improve the performance and life of cutting tool due to their low frictional property. In this study, a sacrificial DLC layer is applied on the hard nitride coated drill tool to improve the durability. The DLC coatings are fabricated by controlling the acceleration voltage of the linear ion source in the range of 0.6~1.8 kV. As a result, the optimized hardness(20 GPa) and wear resistance(1.4 x 10-8 ㎣/N·m) were obtained at the 1.4 kV. Then, the optimized DLC coating is applied as an sacrificial layer on the hard nitride coating to evaluate the performance and life of cutting tool. The Vickers hardness of the composite coatings were similar to those of the nitride coatings (AlCrN, AlTiSiN), but the friction coefficients were significantly reduced to 0.13 compared to 0.63 of nitride coatings. The drilling test were performed on S55C plate using a drilling machine at rotation speed of 2,500 rpm and penetration rate of 0.25 m/rev. The result showed that the wear width of the composite coated drills were 200 % lower than those of the AlCrN, AlTiSiN coated drills. In addition, the cutting forces of the composite coated drills were 13 and 15 % lower than that of AlCrN, AlTiSiN coated drills, respectively, as it reduced the aluminum clogging. Finally, the application of the DLC sacrificial layer prevents initial chipping through its low friction property and improves drilling quality with efficient chip removal.

Nano Particle Coatings on α-alumina Powders by a Carbonate Precipitation (Carbonate 침전법을 이용한 α-알루미나의 나노파티클 코팅)

  • Lim, Jong-Min;Kim, Sang-Woo
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.145-149
    • /
    • 2007
  • Nanocrystalline transient aluminas (${\gamma}$-alumina) were coated on core particles (${\gamma}$-alumina) by a carbonate precipitation and thermal-assisted combustion, which is environmentally friend. The ammonium aluminum carbonate hydroxide (AACH) as a precursor for coating of transient aluminas was produced from precipitation reaction of ammonium aluminum sulfate and ammonium hydrogen carbonate. The crystalline size and morphology of the synthetic, AACH, were greatly dependent on pH and temperature. AACH with a size of 5 nm was coated on the core alumina particle at pH 9. whereas rod shape and large agglomerates were coated at pH 8 and 11, respectively. The AACH was tightly bonded coated on the core particle due to formation of surface complexes by the adsorption of carbonates, hydroxyl and ammonia groups on the surface of the core alumina powder. The synthetic precursor successfully converted to amorphous- and ${\gamma}$-alumina phase at low temperature through decomposition of surface complexes and thermal-assisted phase transformation.

Grain Boundary Chemistry and Electrical Characteristics of Semiconducting $SrTiO_3$ Ceramics Synthesized from Surface-Coated Powders (표면 코팅된 분말을 이용하여 제조된 반도성 $SrTiO_3$ 소결체의 입계화학과 전기적 특성)

  • Park, Myung-Beom;Kim, Chong-Don;Heo, Hyun;Cho, Nam-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.11
    • /
    • pp.1252-1260
    • /
    • 1999
  • The defect chemistry and electrical characteristics of the grain boundaries of semiconducting SrTiO3 ceramics synthesized with wet-chemically surface-coated powders were investigated. The starting powders were separated into groups of 1-10${\mu}{\textrm}{m}$ 10-20${\mu}{\textrm}{m}$ etc by sedimentation and sieving methods. Na+ ions were absorbed on the powder surfaces by wet chemical-treatment method. The width of the grain boundary ranged up to several nm and the intergranular materials was amorphous. The additives coated on the surface of the powders were observed to be present at the grain boundaries of the ceramics. The diffusion depth of the additives into grains was about 30nm for the SrTiO3 ceramics synthesized with 5w/o coated materials, The threshold voltage grain boundary resistance and boundary potential barrier of the ceramics increased from 0.67V/cm 2.27k$\Omega$ and 0.05eV to 80.9V/cm 13.0k$\Omega$ 1.44eV with increasing the amount of the additives from 0 to 5 w/o respectively .

  • PDF