• Title/Summary/Keyword: Surface-active capability

Search Result 43, Processing Time 0.03 seconds

Detection of edge delamination in surface adhered active fiber composites

  • Wang, Dwo-Wen;Yin, Ching-Chung
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.633-644
    • /
    • 2009
  • A simple method has been developed to detect the bonding condition of active fiber composites (AFC) adhered to the surface of a host structure. Large deformation actuating capability is one of important features of AFC. Edge delamination in adhesive layer due to large interfacial shear stress at the free edge is typically resulted from axial strain mismatch between bonded materials. AFC patch possesses very good flexibility and toughness. When an AFC patch is partially delaminated from host structure, there remains sensing capability in the debonded part. The debonding size can be determined through axial resonance measured by the interdigitated electrodes symmetrically aligned on opposite surfaces of the patch. The electrical impedance and modal response of the AFC patch in part adhered to an aluminum plate were investigated in a broad frequency range. Debonding ratio of the AFC patch is in inverse proportion to the resonant frequency of the fundamental mode. Feasibility of in-situ detecting the progressive delamination between AFC patch and host plate is demonstrated.

Optical Simulation Study on Indoor Organic Photovoltaics with Textured Electrodes towards Self-powered Photodetector

  • Biswas, Swarup;Kim, Hyeok
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.236-239
    • /
    • 2019
  • In this work, we performed an optical simulation study on the performance of a PMDPP3T:PCBM based on an organic photovoltaic (PV) device. The virtual PV device was developed in Lumerical, finite-difference time-domain (FDTD) solutions. Different layers of the PV cell have been defined through the incorporation of complex refractive index value of those layers' constituent materials. During the simulation study, the effect of the variation active layer thickness on an ideal short circuit current density ($J_{sc,ideal}$) of the PV cell has been, first, observed. Thereafter, we have investigated the impact of surface roughness of a transparent conducting oxide (TCO) electrode on $J_{sc,ideal}$ of the PV cells. From this simulation, it has been observed that the $J_{sc,ideal}$ value of the PV cell is strongly dependent on the thickness of its active layer and the photon absorption of the PV cell has gradually decreased with the increment of the TCO's surface roughness. As a result, the capability of the PV device has been reduced with the increment of the surface roughness of the TCO.

Bioconjugation of Poly(poly(ethylene glycol) methacrylate)-Coated Iron Oxide Magnetic Nanoparticles for Magnetic Capture of Target Proteins

  • Kang, Sung-Min;Choi, In-Sung S.;Lee, Kyung-Bok;Kim, Yong-Seong
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.259-264
    • /
    • 2009
  • Chemical modification of magnetic nanoparticles(MNPs) with functional polymers has recently gained a great deal of attention because of the potential application of MNPs to in vivo and in vitro biotechnology. The potential use of MNPs as capturing agents and sensitive biosensors has been intensively investigated because MNPs exhibit good separation-capability and binding-specificity for biomolecules after suitable surface functionalization processes. In this work, we demonstrate an efficient method for the surface modification of MNPs, by combining surface-initiated polymerization and the subsequent conjugation of the biologically active molecules. The polymeric shells of non-biofouling poly(poly(ethylene glycol) methacrylate)(pPEGMA) were introduced onto the surface of MNPs by surface-initiated, atom transfer radical polymerization(SI-ATRP). With biotin as a model of biologically active compounds, the polymeric shells underwent successful post-functionalization via activation of the polymeric shells and bioconjugation of biotin. The resulting MNP hybrids showed a biospecific binding property for streptavidin and could be separated by magnet capture.

On the Spatial and Temporal Variability of L-band Polarimetric SAR Observations of Permafrost Environment in Central Yakutia

  • Park, Sang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.47-60
    • /
    • 2017
  • The permafrost active layer plays an important role in permafrost dynamics. Ecological patterns, processes, and water and ice contents in the active layer are spatially and temporally complex depending on landscape heterogeneity and local-scale variations in hydrological processes. Although there has been emerging interest in the application of optical remote sensing techniques to permafrost environments, optical sensors are significantly limited in accessing information on near surface geo-cryological conditions. The primary objective of this study was to investigate capability of L-band SAR data for monitoring spatio-temporal variability of permafrost ecosystems and underlying soil conditions. This study exploits information from different polarimetric SAR observables in relation to permafrost environmental conditions. Experimental results show that each polarimetric radar observable conveys different information on permafrost environments. In the case of the dual-pol mode, the radar observables consist of two backscattering powers and one correlation coefficient between polarimetric channels. Among them, the dual-pol scattering powers are highly sensitive to freeze/thaw transition and can discriminate grasslands or ponds in thermokarst area from other permafrost ecosystems. However, it is difficult to identify the ground conditions with dual-pol observables. Additional backscattering powers and correlation coefficients obtained from quad-pol mode help understanding seasonal variations ofradar scattering and assessing geo-cryological information on soil layers. In particular, co-pol coherences atHV-basis and circular-basis were found to be very usefultools for mapping and monitoring near surface soil properties.

A Facile Process for Surface Modification with Lithium Ion Conducting Material of Li2TiF6 for LiMn2O4 in Lithium Ion Batteries

  • Kim, Min-Kun;Kim, Jin;Yu, Seung-Ho;Mun, Junyoung;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.223-230
    • /
    • 2019
  • A facile method for surface coating with $Li_2TiF_6$ which has a high lithium-ion conductivity, on $LiMn_2O_4$ spinel cathode material for high performance lithium ion batteries. The surface coating is performed by using a co-precipitation method with $Li_2CO_3$ powder and $H_2TiF_6$ solution under room temperature and atmospheric pressure without special equipment. Total coating amount of $Li_2TiF_6$ is carefully controlled from 0 to 10 wt.% based on the active material of $LiMn_2O_4$. They are evaluated by a systematic combination of analyses comprising with XRD, SEM, TEM and ICP. It is found that the surface modification of $Li_2TiF_6$ is very beneficial to high cycle life and excellent rate capability by reducing surface failure and supporting lithium ions transportation on the surface. The best coating condition is found to have a high cycle life of $103mAh\;g^{-1}$ at the 100th cycle and a rate capability of $102.9mAh\;g^{-1}$ under 20 C. The detail electrochemical behaviors are investigated by AC impedance and galvanostatic charge and discharge test.

Surface Functionalization of Carbon Fiber for High-Performance Fibrous Supercapacitor (고성능 섬유형 슈퍼커패시터를 위한 탄소섬유의 표면 기능화)

  • Lee, Young-Geun;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.107-113
    • /
    • 2022
  • Fibrous supercapacitors (FSs), owing to their high power density, good safety characteristic, and high flexibility, have recently been in the spotlight as energy storage devices for wearable electronics. However, despite these advantages, FCs face many challenges related to their active material of carbon fiber (CF). CF has low surface area and poor wettability between electrode and electrolyte, which result in low capacitance and poor long-term stability at high current densities. To overcome these limits, fibrous supercapacitors made using surface-activated CF (FS-SACF) are here suggested; these materials have improved specific surface area and better wettability, obtained by introducing porous structure and oxygen-containing functional groups on the CF surface, respectively, through surface engineering. The FS-SACF shows an improved ion diffusion coefficient and better electrochemical performance, including high specific capacity of 223.6 mF cm-2 at current density of 10 ㎂ cm-2, high-rate performance of 171.2 mF cm-2 at current density of 50.0 ㎂ cm-2, and remarkable, ultrafast cycling stability (96.2 % after 1,000 cycles at current density of 250.0 ㎂ cm-2). The excellent electrochemical performance is definitely due to the effects of surface functionalization on CF, leading to improved specific surface area and superior ion diffusion capability.

Synthesis and characterization of visible light active photocatalytic $TiO_2$

  • Kim, Duk-Su;Park, Kyu-Sung;Kim, Il-Doo;Kim, Ho-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1116-1120
    • /
    • 2002
  • Using thermal hydrolysis and hydrothermal treatment, photocatalytic $TiO_2$ powders were synthesized. During the synthesis, the addition of other transition metals such as iron, copper, etc., affected the photocatalytic capability of synthesized powders, and enabled the activation by visible light. To enhance photocatalytic capacity of gas phase decomposition, the rate-determining adsorption rate of pollutant gases were improved via surface modification of $TiO_2$ powders. The surface modifiers were implanted using mechanochemical synthesis of dopants and photocatalytic powders.

  • PDF

Characterization of Atmospheric H2-Plasma-Treated LiNi1/3Co1/3Mn1/3O2 as Cathode Materials in Lithium Rechargeable Batteries (리튬이차전지에서 대기압 수소플라즈마 처리된 LiNi1/3Co1/3Mn1/3O2 양극 활물질의 특성분석)

  • Sun, Ho-Jung;Lee, Jae-Ho;Jeong, Hyun-Young;Seok, Dong-Chan;Jung, Yongho;Park, Gyungse;Shim, Joongpyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.160-171
    • /
    • 2013
  • $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ powder for cathode materials in lithium rechargeable batteries was treated by atmospheric plasma containing hydrogen to investigate the relationship between charge/discharge performance and physical/chemical changes of materials. Hydrogen plasma at atmosphere pressure was irradiated on the surface of active materials, and the change for their crystal structure, surface morphology, and chemical composition were observed by XRD, SEM-EDS and titration method, respectively. The crystal structure and surface morphology of $H_2$ plasma-treated powders were not changed but their chemical compositions were slightly varied. For charge/discharge test, $H_2$ plasma affected initial capacity and rate capability of active materials but continuous cycling was not subject to plasma treatment. Therefore, it was observed that $H_2$ plasma treatment affected the surface of materials and caused the change of chemical composition.

Electrochemical Biosensors based on Nanocomposites of Carbon-based Dots

  • Ngo, Yen-Linh Thi;Jana, Jayasmita;Chung, Jin Suk;Hur, Seung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.499-513
    • /
    • 2020
  • Among the many studies of carbon-based nanomaterials, carbon-based dots (CDs) have attracted considerable interest owing to their large surface area, intrinsic low-toxicity, excellent biocompatibility, high solubility, and low-cost with environmentally friendly routes, as well as their ability for modification with other nanomaterials. CDs have several applications in biosensing, photocatalysis, bioimaging, and nanomedicine. In addition, the fascinating electrochemical properties of CDs, including high active surface area, excellent electrical conductivity, electrocatalytic activity, high porosity, and adsorption capability, make them potential candidates for electrochemical sensing materials. This paper reviews the recent developments and synthesis of CDs and their composites for the proposed electrochemical sensing platforms. The electrochemical principles and future perspective and challenges of electrochemical biosensors are also discussed based on CDs-nanocomposites.

The Electrochemical Characteristics of Surface-modified Carbonaceous Materials by tin Oxides and Copper for Lithium Secondary Batteries

  • Lee, Joong-Kee;Ryu, D.H.;Shul, Y.G.;Cho, B.W.;Park, D.
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.170-177
    • /
    • 2001
  • Lithium intercalated carbon (LIC) are basically employed as an anode for currently commercialized lithium secondary batteries. However, there are still strong interests in modifying carbon surface of active materials of the anode because the amount of irreversible capacity, charge-discharge capacity and high rate capability are largely determined by the surface conditions of the carbon. In this study, the carbonaceous materials were coated with tin oxide and copper by fluidized-bed chemical vapor deposition (CVD) method and their coating effects on electrochemical characteristics were investigated. The electrode which coated with tin oxides gave the higher capacity than that of raw material. Their capacity decreased with the progress of cycling possibly due to severe volume changes. However, the cyclability was improved by coating with copper on the surface of the tin oxides coated carbonaceous materials, which plays an important role as an inactive matrix buffering volume changes. An impedance on passivation film was decreased as tin oxides contents and it resulted in the higher capacity.

  • PDF