• 제목/요약/키워드: Surface zeta potential

검색결과 259건 처리시간 0.029초

표면전하 거동 조절을 이용한 탈크-실리카 복합체의 제조 (Preparation of Talc-Silica Composites by Controlling Surface Charge Behavior)

  • 윤기훈;박민경;문영진;이동규
    • 한국응용과학기술학회지
    • /
    • 제34권1호
    • /
    • pp.116-124
    • /
    • 2017
  • 색조 화장품 원료로 사용되는 무기안료 탈크와 소수성 실리카의 제타전위 차를 조절하여 표면처리된 판상 무기안료 복합체를 제조하였다. 탈크는 색조 화장품의 처방에서 주로 쓰이는 판상 무기물질로서 피부에 대한 발림성과 퍼짐성을 갖는 백색 안료이다. 또한 분산성과 신장성이 우수하며, 내열성, 내광성, 내화학성 등에 안정하다. 실리카는 일반적인 색조화장품에서 화장의 지속성을 높여주며 제형에서의 안정성을 높여주는 역할을 한다. 본 연구에서는 탈크와 소수성 실리카를 각각 양이온성, 음이온성 계면활성제로 표면전하를 조절한 후 제타전위 차를 이용하여 탈크 표면에 소수성 실리카를 표면처리하여 무기안료 복합체를 제조하였다. 제조된 무기안료 복합체는 소수성 실리카가 탈크 표면 위에 $1{\mu}m$ 이하로 코팅되어 있으며 효과적인 소수성을 띤다. 무기안료의 표면전하 분석을 위해 제타전위를 측정하였고, 계면활성제 표면처리된 안료는 FT-IR 로 계면활성제의 작용기를 확인하였다. 무기안료 복합체의 표면은 SEM, EDS, FIB 등으로 관찰하였으며, XRD, FT-IR 등으로 구조를 확인하였다.

계란껍질 분말을 혼입한 시멘트 페이스트의 수화 특성에 관한 실험적 연구 (Experimental Study on the Hydration Characteristics of Eggshell Powder in Cement Slurry)

  • 진옥곤;순양;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.110-111
    • /
    • 2021
  • The eggshell is a type of bio-waste which is considered hazardous to the environment. In this research, the waste eggshell is utilized as a potential filler in cementitious material. This study has measured by zeta potential to analyze the interaction between the surface of the filler and the calcium ion in the solution. Meanwhile, the effect of eggshell powder on cement hydration process has been determined by isothermal calorimeter. The results show that the surface of eggshell powder have a strong adsorption of Ca2+, and addition of the eggshell powder provides a heterogeneous nucleation site for cement, which promotes the growth of hydration products.

  • PDF

Electrophoretic Mobility to Monitor Protein-Surfacant Interactions

  • Hong, Soon-Taek
    • Preventive Nutrition and Food Science
    • /
    • 제3권2호
    • /
    • pp.143-151
    • /
    • 1998
  • Protein -surfactant interactions have been investigate by measuring ζ-potential of $\beta$-lactoglobulin-coated emulsion droplets and $\beta$-lactoglobulin in solution in the rpesenceof surfactant, with particular emphasis on the effect of protein heat treatment(7$0^{\circ}C$, 30min). When ionic surfactant (SDS or DATEM) is added to the protein solution, the ζ-potential of the mixture is found to increase with increasing surfactant concentration, indicating surfactant binding to the protein molecules. For heat-denatured protein,it has been observed that the ζ-potential tends to be lower than that of the native protein. The effect of surfactant on emulsions is rather complicated .With SDS, small amounts of surfactant addition induce a sharp increase in zeta potential arising from the specific interaction of surfactant with protein. With further surfacant addition, there is a gradual reductio in the ζ-potential, presumably caused by the displacement of adsorped protein (and protein-surfactant complex) from the emulsion droplet surfac by the excess of SDS molecules. At even higher surfactant concentrations, the measured zeta potential appears to increase slightly, possibly due to the formation of a surfactant measured zeta potential appears to increase slightly, possibly due to the formation of surfactant micellar structure at the oil droplet surface. This behaviour contrastswith the results of the corresponding systems containing the anionic emulsifier DATEM, in which the ζ-potential of the system is found to increase continuously with R, particularly at very low surfactant concentration. Overall, such behaviour is consisten with a combination of complexation and competitive displacement between surfactant and protein occurring at the oil-water interface. In addition, it has also been found that above the CMC, there is a time-dependent increase in the negative ζ-potential of emulsion droplets in solutions of SDS, possibly due to the solublization of oil droplets into surfactant micelles in the aqueous bulk phase.

  • PDF

무전해 Ni 복합도금에서 분말의 공석에 미치는 Na 이온의 영향 (A Study of the Effects of Na Ion on Codeposition of Particles in the Formation of Electroless Ni Composite Coatings)

  • 이원해;이승평
    • 한국표면공학회지
    • /
    • 제22권2호
    • /
    • pp.101-108
    • /
    • 1989
  • Effects of Na+ ion on zeta potential of SiC and Al2O3 particles suspended in nikel sufate and nickel chloride solutions were investigated. various complexing agents for Ni2+ ion were added to electroless Ni composite bath and the effects of the complexing agents on zeta potential and codeposition of the particles from the baths were studied. It was confirmed that Na+ ion was absorbed on the particles bringing about the positive surface charge and thus they promoted the entrapment of the particles into the nickel deposit. On the basis of these results it was possible to deposit SiCc particle in nickel chloride electrolyte containing complex agent such as trisodium citrate+sodium succinate.

  • PDF

표면 처리한 Sea sand를 이용한 Se(IV) 제거 - Zeta potential을 통한 Fe(III)간의 반은 메카니즘 연구 (Removal of Se(IV) by the Fe(III)-impregnated Sea sand - Zeta potential approach to depict the binding between Fe(III) and Sea sand)

  • 박상원;강혜정
    • 한국환경과학회지
    • /
    • 제8권2호
    • /
    • pp.205-209
    • /
    • 1999
  • Iron hydroxides are good adsorbents for uncomplexed metals, some metal-ligand complexes and many metal oxyanions. However, their adsorption properties of these precipitations are not fully exploited in wastewater treatment operations because of difficulties associated with their separation from the aqueous phase. This study describes experiments in which iron hydroxides were coated onto the surface of ordinary adsorbents(Sea sand) that are very resistant to acids, The coated adsorbents were used in adsorption of oxyanionic metals. The process was successful in removing some anions such as $SeO_3(-II)$ over a wide range of metal concentrations and sorption of oxyanionic metals increased with decreasing pH. Formation of two surface complexes for oxyanionic metals adsorption on iron hydroxides comprise (1) complexation of the free anion by a positively charged surface site, and (2) protonation of the adsorbed anion (or alternatively adsorption of a protonated form from solution) The coated adsorbents are inexpensive to prepare and could serve as the basis of a useful oxyanionic metal removal.

  • PDF

Mechanism of Escherichia Coli Removal by Hydroxyapatite

  • Su-Chak Ryu;Dong-Hun Lee;Jae-Hoon Jeong;Sung-Kwang Jo
    • 한국재료학회지
    • /
    • 제34권6호
    • /
    • pp.261-266
    • /
    • 2024
  • Although most strains of escherichia coli (E. coli) are harmless, some serotypes can cause serious food poisoning in humans. It is very difficult to eliminate E. coli from our lives. Here we show that E. coli can be eliminated by hydroxyapatite (HAp). Because HAp has a positive charge, the material and E. coli are attracted through electrostatic interactions. Additionally, because the surface of HAp is porous, it enters the pores of the HAp surface removing them from the environment. The amount of adsorption was observed to increase over time, and the zeta potential value of the material tended to be similar to that of E. coli. This phenomenon is thought to have zeta potential similar to that of E. coli as it is adsorbed onto the HAp surface over time. E. coli stained with crystal violet was spread on a glass slide and HAp porous sol powder was dropped to remove the E. coli. We expect that this analysis will open a new direction for antibacterial materials.

급속모래여과에서 PAC 피복에 의한 초기 유출수의 탁도 개선 (Improving the Initial Effluent Turbidity by Polyaluminium Chloride(PAC) Coating in Rapid Sand Filtration)

  • 윤태한;김우항
    • 한국물환경학회지
    • /
    • 제18권3호
    • /
    • pp.253-260
    • /
    • 2002
  • The purpose of this research was to describe the mechanisms and prevention of initial degradation in turbidity of the sand filter effluent. The method used was by adding a coagulant (PAC) to the sand filter after backwashing as a means of reducing turbidity. It was found that adding 80 mg/L of PAC solution to the sand filter was very effective in improving the initial effluent turbidity. A turbidity removal efficiency of 99 % was observed in the initial term period as compared to a 70% efficiency without PAC addition. The PAC solution added to the sand filter resulted in high aluminum concentration at the upper layer as compared with the bottom layer of the sand filter column. A change in the zeta potential to a strong positive-ions at upper layer was observed at this time but only a small change was obtained at the bottom. This result showed that the zeta potential of the sand was changed to positive with PAC coating. The effect of pH on zeta potential with PAC addition was also investigated. Zeta potential was greatly changed to positive-ion at pH 4~6. A series of experiments was then conducted in this study to optimize the pH of the PAC solution to be added to the sand filter after backwashing. The removal efficiency of turbidity was found to be highest at pH 5. This result suggested that hydrolyzed aluminium species attached to the surface of the sand enhanced the removal of turbidity of the effluent.

UV/Ozone 조사에 의한 PTT 필름의 연속식 표면처리와 염색성 (Continuous Surface Treatment and Dyeability of PTT Film via $UV/O_3$ Irradiation)

  • 장진호;박대선
    • 한국염색가공학회지
    • /
    • 제17권1호
    • /
    • pp.7-13
    • /
    • 2005
  • Continuous and intense UV irradiation on PTT film using two types of UV bulbs at different irradiation power level was carried out to modify surface characteristics of the film including zeta potential, wettability, surface energy, and dyeability. ESCA analysis of the irradiated film showed higher O/C ratio than the untreated film indicating photooxidation of outer surface layer. ATR analysis showed that the ester bonds were broken and some new groups were produced such as carboxylic acid, phenolic hydroxy, and other esters, implying that ester bonds of PTT was responsible for the observed photooxidation effect. The surface of the treated PTT film became more hydrophilic and wettable to water, coupled with increased surface energy. Polar component of the surface energy increased and nonpolar component decreased with increasing irradiation energy. The treatment also decreased zeta potential of the modified surface and nanoscale roughness increased with increasing irradiation. The dyeability of the treated films to catonic dyes was significantly improved by electrostatic and polar interaction between dye molecules and the anionic film surface. The UV irradiation seems to be a viable polymer surface modification technology, which has advantages such as no vacuum requirement and continuous process unlike plasma treatment.

하동 카올린으로부터 제조한 $\beta$-Sialon 분체의 계면특성 (Interfacial Characterization of $\beta$-Sialon Powder Prepared from Hadong Kaolin)

  • 임헌진;이홍림
    • 한국세라믹학회지
    • /
    • 제29권7호
    • /
    • pp.551-557
    • /
    • 1992
  • X-ray diffraction patterns, IR spectra and zeta-potentials of silicon nitride and $\beta$-Sialon powders were investigated before and after surface manipulations. $\beta$-Sialon powder was produced from Hadong Kaolin by the carbothermic reduction and simulataneous nitridation. Isoelectric points of as-prepared Si3N4 and $\beta$-Sialon powders were 8.4 and 7.4, respectively. After both silicon nitride and $\beta$-Sialon powders were oxidized at 80$0^{\circ}C$ for 24 h in air, the isoelectric points of these powders corresponded to that of silica (pH=3). I case of the addition of Darvan C as deflocculant, its isoelectric point was 3 and zeta-potential was nearly constant in the range of pH 5~12. When SN 7347 was used as deflocculant, its isoelectric point was 8.3 and zeta-potential over -156 mV was measured above pH 11.

  • PDF

표면특성 변화에 따른 유류분해 미생물의 토양내 거동성 조절

  • 류두현;목지예;최상일;김용미;이경애
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.360-362
    • /
    • 2003
  • The adhesion of hydrocarbon degrading bacteria(HDB) differing in surface hydrophobicity was investigated. Cell wall hydrophobicity was modified chemically and physiologically. Modified adhesion deficient mutant of HDB was selected in a soil column assay Physiologically and chemical modification increased cell surface hydrophobicity. Cell surface charcteristis including BATH and zeta potential were measured. Physiological modification using ampicillin was not stable, but chemical modification was stabel. Hydrocarbon degrading potential was measured for modified and unmodifed HDB.

  • PDF