• Title/Summary/Keyword: Surface wind

Search Result 1,645, Processing Time 0.027 seconds

Human Thermal Environment Analysis with Local Climate Zones and Surface Types in the Summer Nighttime - Homesil Residential Development District, Suwon-si, Gyeonggi-do (Local Climate Zone과 토지피복에 따른 여름철 야간의 인간 열환경 분석 - 경기도 수원시 호매실 택지개발지구)

  • Kong, Hak-Yang;Choi, Nakhoon;Park, Sookuk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.227-237
    • /
    • 2020
  • Microclimatic data were measured, and the human thermal sensation was analyzed at 10 local climate zones based on the major land cover classification to investigate the thermal environment of urban areas during summer nighttime. From the results, the green infrastructure areas (GNIAs) showed an average air temperature of 1.6℃ and up to 2.4℃ lower air temperature than the gray infrastructure areas (GYIAs), and the GNIAs showed an average relative humidity of 9.0% and up to 15.0% higher relative humidity. The wind speed of the GNIAs and GYIAs had minimal difference and showed no significance at all locations, except for the forest location, which had the lowest wind speed owing to the influence of trees. The local winds and the surface roughness, which was determined based on the heights of buildings and trees, appeared to be the main factors that influenced wind speed. At the mean radiant temperature, the forest location showed the maximum value, owing to the influence of trees. Except at the forest location, the GNIAs showed an average decrease of 5.5℃ compared to GYIAs. The main factor that influenced the mean radiant temperature was the sky view factor. In the analysis of the human thermal sensation, the GNIAs showed a "neutral" thermal perception level that was neither hot nor cold, and the GYIAs showed a "slightly warm" level, which was a level higher than those of the GNIAs. The GNIAs showed a 3.2℃ decrease compared to the GYIAs, except at the highest forest location, which indicated a half-level improvement in the human thermal environment.

Application of microwave water surface current meter for measuring agricultural water intake (농업용수 사용량 계측을 위한 전자파 표면유속계의 적용)

  • Baek, Jongseok;Kim, Chiyoung;Lee, Kisung;Kang, Hyunwoong;Song, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1071-1079
    • /
    • 2020
  • For integrated water management, it is essential to secure basic data such as the amount of agricultural water intake. The river water intake through the intake weir is carried out through the agricultural irrigation canal, and a method for measuring the quantity of water intake is required to suit the characteristics of the measuring points. In this study, the accuracy of the calculated flow data was determined by applying a microwave water surface current meter. The microwave water surface current meter is a method of calculating surface velocity using doppler effect, which is mainly used in high-velocities situations such as flood. Surface velocity is difficult to represent the average velocity of the entire section at low dicharges or high wind speeds, it is considered to be low in continuous utilization throughout the year, and it is necessary to verify whether the measurement using an microwave water surface curren meter is appropriate in agricultural irrigation canal. The data measured with an microwave water surface curren meter were compared with the actual flow data to calculate the intake data in agricultural irrigation canal. In agricultural irrigation canal, the low-level discharge calculated using an microwave water surface current meter at a minimum velocity of about 0.3 m/s and a minimum discharge of about 1.0 m3/s or higher was found to have a high tendency and accuracy compared to the standard discharge, especially when the high discharge was high. Although effective results can be obtained in terms of quantity at low discharge, it is deemed that subsequent studies are needed to calculate the average discharge of the cross section at low discharge, given that the trend of data is unstable. Through this study, it is suggested that it is appropriate to calculate the amount of water intake through the microwave water surface current meter in artificial waterways with a certain discharge or higher, so it is expected to be widely distributed as a method for measuring river water intake.

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.

Processing and Quality Control of Flux Data at Gwangneung Forest (광릉 산림의 플럭스 자료 처리와 품질 관리)

  • Lim, Hee-Jeong;Lee, Young-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.3
    • /
    • pp.82-93
    • /
    • 2008
  • In order to ensure a standardized data analysis of the eddy covariance measurements, Hong and Kim's quality control program has been updated and used to process eddy covariance data measured at two levels on the main flux tower at Gwangneung site from January to May in 2005. The updated program was allowed to remove outliers automatically for $CO_2$ and latent heat fluxes. The flag system consists of four quality groups(G, D, B and M). During the study period, the missing data were about 25% of the total records. About 60% of the good quality data were obtained after the quality control. The number of record in G group was larger at 40m than at 20m. It is due that the level of 20m was within the roughness sublayer where the presence of the canopy influences directly on the character of the turbulence. About 60% of the bad data were due to low wind speed. Energy balance closure at this site was about 40% during the study period. Large imbalance is attributed partly to the combined effects of the neglected heat storage terms, inaccuracy of ground heat flux and advection due to local wind system near the surface. The analysis of wind direction indicates that the frequent occurrence of positive momentum flux was closely associated with mountain valley wind system at this site. The negative $CO_2$ flux at night was examined in terms of averaging time. The results show that when averaging time is larger than 10min, the magnitude of calculated $CO_2$ fluxes increases rapidly, suggesting that the 30min $CO_2$ flux is influenced severely by the mesoscale motion or nonstationarity. A proper choice of averaging time needs to be considered to get accurate turbulent fluxes during nighttime.

Evaluation of the Natural Vibration Modes and Structural Strength of WTIV Legs based on Seabed Penetration Depth (해상풍력발전기 설치 선박 레그의 해저면 관입 깊이에 따른 고유 진동 모드와 구조 강도 평가)

  • Myung-Su Yi;Kwang-Cheol Seo;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.127-134
    • /
    • 2024
  • With the growth of offshore wind power generation market, the corresponding installation vessel market is also growing. It is anticipated that approximately 100 installation vessels will be required in the of shore wind power generation market by 2030. With a price range of 300 to 400 billion Korean won per vessel, this represents a high-value market compared to merchant vessels. Particularly, the demand for large installation vessels with a capacity of 11 MW or more is increasing. The rapid growth of the offshore wind power generation market in the Asia-Pacific region, centered around China, has led to several discussions on orders for operational installation vessels in this region. The seabed geology in the Asia-Pacific region is dominated by clay layers with low bearing capacity. Owing to these characteristics, during vessel operations, significant spudcan and leg penetration depths occur as the installation vessel rises and descends above the water surface. In this study, using penetration variables ranging from 3 to 21 m, the unique vibration period, structural safety of the legs, and conductivity safety index were assessed based on penetration depths. As the penetration depth increases, the natural vibration period and the moment length of the leg become shorter, increasing the margin of structural strength. It is safe against overturning moment at all angles of incidence, and the maximum value occurs at 270 degrees. The conditions reviewed through this study can be used as crucial data to determine the operation of the legs according to the penetration depth when developing operating procedures for WTIV in soft soil. In conclusion, accurately determining the safety of the leg structure according to the penetration depth is directly related to the safety of the WTIV.

Characteristics of Water Temperature and Salinity in the Bottol Bada, Yeosu during Summer in 2010 (2010년 하계 보돌바다의 수온과 염분 특성)

  • Cho, Eun-Seob
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.301-306
    • /
    • 2011
  • This study was determined to analysis the characteristics of water mass in the Bottol Bada, Yeosu in August, 2010 based on the data from the distribution of water temperature and salinity. Sampling was carried out a total of three times (i.e. July 29, August 13, and August 30, 2010) and performed at three stations. Observation was done during the period of time 10:00-15:00, indicating the decreasing tidal height and turn of tide. In July 29, thermocline was found at 4 m in St. 1, but the stratification did not observe in August 13 and August 30. The remarkable water temperature between surface and bottom was found in St. 2 and St. 3, whereas St. 1 did not find. A particular finding during this study showed a cold water mass at bottom layer from St. 2 and St. 3, which was first occurred in July 29 and persisted in August 30 without any of destruction. Water temperature had a remarkable fluctuation between surface and bottom, whereas salinity had a unique in St. 1. St. 2 and St. 3 showed the increasing salinity according to water depth in August 13 and August 30. Transparency had considerable fluctuations in St. 1 and St. 3 depending to sampling date, but St. 2 did not fluctuate. Consequently, the Bottol Bada had a significantly different water mass between inner and outer waters. Furthermore, strong irradiance and weak wind play an important role in developing the stratification between surface and bottom, in particular the introduction of offshore waters contribute to highly developing the stratification in the Bottol Bada during the period of August in 2010.

Estimations and Long-term Trend of Sea-to-air Dimethyl Sulfide (DMS) Flux using Satellite Observation Data (인공위성 관측 자료를 이용한 해양-대기 DMS flux 추정 및 장기 추세 분석)

  • Choi, Yu-Na;Song, Sang-Keun;Han, Seung-Beom;Son, Young-Baek;Park, Yeon-Hee
    • Ocean and Polar Research
    • /
    • v.39 no.3
    • /
    • pp.181-194
    • /
    • 2017
  • The long-term linear trend of global sea-to-air dimethyl sulfide (DMS) flux was analyzed over a 16-year time span (2000~2015), based on satellite observation data. The emission rates of DMS (i.e. DMS flux) in the global ocean were estimated from sea surface DMS concentrations, which were constructed with chlorophyll a (Chl-a) concentrations and mixed layer depths (MLD), and transfer velocity from sea to air, which was parameterized with sea surface wind (SSW) and sea surface temperature (SST). In general, the DMS flux in the global ocean exhibited a gradual decreasing pattern from 2000 (a total of 12.1 Tg/yr) to 2015 (10.7 Tg/yr). For the latitude band ($10^{\circ}$ interval between $0^{\circ}$ and $60^{\circ}$), the DMS flux at the low latitude of the Northern (NH) and Southern hemisphere (SH) was significantly higher than that at the middle latitude. The seasonal mean DMS flux was highest in winter followed by in summer in both hemispheres. From the long-term analysis with the Mann-Kendall (MK) statistical test, a clear downward trend of DMS flux was predicted to be broad over the global ocean during the study period (NH: $-0.001{\sim}-0.036{\mu}mol/m^2/day\;per\;year$, SH: $-0.011{\sim}-0.051{\mu}mol/m^2/day\;per\;year$). These trend values were statistically significant (p < 0.05) for most of the latitude bands. The magnitude of the downward trend of DMS flux at the low latitude in the NH was somewhat higher than that at the middle latitude during most seasons, and vice versa for the SH. The spatio-temporal characteristics of DMS flux and its long-term trend were likely to be primarily affected not only by the SSW (high positive correlation of r = 0.687) but also in part by the SST (r = 0.685).

The Influence of Evaporation from a Stream on Fog Events in the Middle Nakdong River (낙동강 중류에서 하천 증발이 안개에 미치는 영향)

  • Park, Jun Sang;Kim, Kyu Rang;Kang, Misun;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.38 no.6
    • /
    • pp.395-404
    • /
    • 2017
  • In this study, we classified observed fog events in the Middle Nakdong River near Gumi and analyzed the meteorological characteristics before and after the fog formation. The observation was performed from 2013 to 2015 using visibility meter. A total of 74 fog events were observed and most of them were classified as steam fog. The duration of observed steam fogs was longer than that of typical inland fogs because the nocturnal evaporation from the water surface was enhanced by the topographical characteristics. In order to analyze the effect of evaporation from the stream on the fog duration, the evaporation was estimated using the Penman-Monteith and the Bulk aerodynamic methods. The estimated evaporation by the Bulk method was similar to the actual evaporation from the water surface. Therefore, the Bulk method is suitable for estimating the evaporation from water surface. The evaporation amount, estimated by using the Bulk method was higher on fog days than non-fog days at 06 LST and 07 LST. The added evaporation of fog days released latent heat to the atmosphere and provided energy to maintain the turbulence in the fog. This phenomenon was confirmed by the increase of wind speed, temperature and turbulent kinetic energy within the fog.

Temporal and Spatial Variations in Sea Surface Temperature Around Boryeong off the West Coast of Korea From 2011-2012 (2011-2012년 서해 보령연안 수온의 시공간적 변동)

  • Choo, Hyo-Sang;Yoon, Eun-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.497-512
    • /
    • 2017
  • Temporal and spatial variations in surface water temperature were studied using data from temperature monitoring buoys deployed at 47 stations around Boryeong from 2011-2012 off the west coast of Korea. Temperature fluctuations are predominant at diurnal and semidiurnal periods for all seasons, and their amplitudes are large in spring and summer but small in autumn. The maximum annual change in air temperature takes place on August 2nd and August 22th for water temperature, which means the phase for air temperature precedes water temperature by 20 days. The diurnal period of water temperature fluctuation is predominant around Daecheon and Muchangpo Harbors, with the semidiurnal period around Wonsan Island, and the shallow water constituent period on the estuary around Daecheon River. On the whole, air and water temperatures fluctuate with wind. Spectral analyses of temperature records show significant peaks at the 0.5, 1 and 15 day marks with 7-10 day periods of predominant fluctuations. Cross-correlation analyses for the temperature fluctuation show that the waters around Boryeong can be classified into four areas: a mixed water zone around the southeast side of Wonsan Island, an off-shore area to the west, an off-shore area to the south and a coastal area along the shore from Song Island to Muchangpo Harbor.

Mixing Analysis of Oil Spilled into the River by GPS-equipped Drifter Experiment and Numerical Modeling (GPS 부자 실험과 수치모델링에 의한 하천에 유입된 유류오염물질의 거동 해석)

  • Jang, Juhyoung;Jong, Jaehun;Mun, Hyunsaing;Kim, Kyunghyun;Seo, Ilwon
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.243-252
    • /
    • 2016
  • In cases of water pollution accidents, accurate prediction for arrival time and concentration of contaminants in a river is essential to take proper measures and minimize their impact on downstream water intake facilities. It is critical to fully understand the behavior characteristics of contaminants on river surface, especially in case of oil spill accidents. Therefore, in this study, the effects of main parameters of advection and diffusion of contaminants were analyzed and validated by comparing the results of Lagrangian particle tracking (LPT) simulation of Environmental Fluid Dynamic Code (EFDC) model with those of Global Position System (GPS)-equipped drifter experiment. Prevention scenario modeling was accomplished by taking cases of movable weir operation into account. The simulated water level and flow velocity fluctuations agreed well with observations. There was no significant difference in the speed of surface particle movement between 5 and 10 layer modeling. Therefore, 5 layer modeling could be chosen to reduce computational time. It was found that full three dimensional modeling simulated wind effects on surface particle movements more sensitively than depth-averaged two dimensional modeling. The diffusion range of particles was linearly proportional to horizontal diffusivity by sensitivity analysis. Horizontal diffusivity estimated from the results of GPS-equipped drifter experiment was 0.096 m2/sec, which was considered to be valid for applying the LPT module in this area. Finally, the scenario analysis results showed that particle movements could be stagnant when discharge from the upstream weir was reduced, implying the possibility of securing time for mitigation actions such as oil boom installation and wiping oil contaminants. The outcomes of this study can help improve the prediction accuracy of particle tracking simulation to establish the most suitable mitigation plan considering the combination of movable weir operation.