DOI QR코드

DOI QR Code

Estimations and Long-term Trend of Sea-to-air Dimethyl Sulfide (DMS) Flux using Satellite Observation Data

인공위성 관측 자료를 이용한 해양-대기 DMS flux 추정 및 장기 추세 분석

  • Choi, Yu-Na (Department of Earth and Marine Sciences, College of Ocean Sciences Jeju National University) ;
  • Song, Sang-Keun (Department of Earth and Marine Sciences, College of Ocean Sciences Jeju National University) ;
  • Han, Seung-Beom (Department of Earth and Marine Sciences, College of Ocean Sciences Jeju National University) ;
  • Son, Young-Baek (Jeju International Marine Science Research & Logistics Center, KOST) ;
  • Park, Yeon-Hee (Department of Earth and Marine Sciences, College of Ocean Sciences Jeju National University)
  • 최유나 (제주대학교 해양과학대학 지구해양과학과) ;
  • 송상근 (제주대학교 해양과학대학 지구해양과학과) ;
  • 한승범 (제주대학교 해양과학대학 지구해양과학과) ;
  • 손영백 (한국해양과학기술원 제주국제해양과학연구.지원센터) ;
  • 박연희 (제주대학교 해양과학대학 지구해양과학과)
  • Received : 2017.08.04
  • Accepted : 2017.09.07
  • Published : 2017.09.30

Abstract

The long-term linear trend of global sea-to-air dimethyl sulfide (DMS) flux was analyzed over a 16-year time span (2000~2015), based on satellite observation data. The emission rates of DMS (i.e. DMS flux) in the global ocean were estimated from sea surface DMS concentrations, which were constructed with chlorophyll a (Chl-a) concentrations and mixed layer depths (MLD), and transfer velocity from sea to air, which was parameterized with sea surface wind (SSW) and sea surface temperature (SST). In general, the DMS flux in the global ocean exhibited a gradual decreasing pattern from 2000 (a total of 12.1 Tg/yr) to 2015 (10.7 Tg/yr). For the latitude band ($10^{\circ}$ interval between $0^{\circ}$ and $60^{\circ}$), the DMS flux at the low latitude of the Northern (NH) and Southern hemisphere (SH) was significantly higher than that at the middle latitude. The seasonal mean DMS flux was highest in winter followed by in summer in both hemispheres. From the long-term analysis with the Mann-Kendall (MK) statistical test, a clear downward trend of DMS flux was predicted to be broad over the global ocean during the study period (NH: $-0.001{\sim}-0.036{\mu}mol/m^2/day\;per\;year$, SH: $-0.011{\sim}-0.051{\mu}mol/m^2/day\;per\;year$). These trend values were statistically significant (p < 0.05) for most of the latitude bands. The magnitude of the downward trend of DMS flux at the low latitude in the NH was somewhat higher than that at the middle latitude during most seasons, and vice versa for the SH. The spatio-temporal characteristics of DMS flux and its long-term trend were likely to be primarily affected not only by the SSW (high positive correlation of r = 0.687) but also in part by the SST (r = 0.685).

Keywords

References

  1. 김기현, 오재룡, 강성현, 이수형, 이강웅 (1996) 해수 및 대기중 DMS의 분석: 마산만을 중심으로. 한국대기보전학회지 12(4):495-504 Kim KH, Oh JR, Kahng SH, Lee SH, Lee GW (1996) Dimethylsulfide (DMS) in seawater and the overlying atmosphere of the Masan Bay. J Kor Air Pollut Res Assoc 12(4):495-504
  2. 김기현, 이강웅, 허철구, 강창희 (1997) 제주도 연안해역을 중심으로 한 DMS 농도의 관측. 한국대기보전학회지 13(2):161-170 Kim KH, Lee KW, Hu CG, Kang CH (1997) Dimethylsulfide (DMS) in the coastal areas of the Cheju Island, Korea. J Kor Air Pollut Res Assoc 13(2):161-170
  3. 김기현, 김지영, 송기범, 김나영, 이강웅, 배귀남 (2000) 한국 황해지역의 DMS 분포특성에 대한 연구-덕적도를 중심으로. 한국지구과학회지 21(1):51-58 Kim KH, Kim JY, Song KB, Kim NY, Lee GW, Bae GN (2000) Distribution of DMS concentration in the atmosphere over Yellow Sea - Preliminary measurements from Duk-Juk Island. J Kor Earth Sci Soc 21(1):51-58
  4. 김기현, Hillton S, 양규승, 김지영, 손장호, 이강웅, 강창희 (2002) 제주지역을 중심으로 한 대기 중 황화합물의 관측. 한국지구과학회지 23(5):416-423 Kim KH, Swan H, Yang GS, Kim JY, Shon ZH, Lee GW, Kang CH (2002) Analysis of atmospheric sulfur compounds in Cheju. J Kor Earth Sci Soc 23(5):416-423
  5. 성기탁, 황재동, 한인성, 고우진, 서영상, 이재영 (2010) 한국 연근해 수온의 시공간적 장기변동 특성. 해양환경안전학회지 16(4):353-360 Seong KT, Hwang JD, Han IS, Go WJ, Suh YS, Lee JY (2010) Characteristic for long-term trends of temperature in the Korean Waters. Kor Soc Mar Environ Saf 16(4):353-360
  6. 장풍국, 이원제, 장민철, 이재도, 이우진, 장만, 황근춘, 신경순 (2005) 광양만에서 무기 영양염의 시공간적 분포를 조절하는 요인. Ocean Polar Res 27(4):359-379 Jang PG, Lee WJ, Jang MC, Lee JD, Lee WJ, Chang M, Hwang KC, Shin KS (2005) Spatial and temporal distribution of inorganic nutrients and factors controlling their distributions in Gwangyang Bay. Ocean Polar Res 27(4):359-379 https://doi.org/10.4217/OPR.2005.27.4.359
  7. Andreae MO (1990) Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar Chem 30:1-29 https://doi.org/10.1016/0304-4203(90)90059-L
  8. Andreae MO, Crutzen PJ (1997) Atmospheric aerosol: biogeochemical sources and role in atmospheric chemistry. Science 276:1052-1058 https://doi.org/10.1126/science.276.5315.1052
  9. Andreae TW, Andreae MO, Schebeske G (1994) Biogenic sulfur emissions and aerosols over the tropical South Atlantic: 1. Dimethylsulfide in sea water and in the atmospheric boundary layer. J Geophys Res-Atmos 99(D11):22819-22829 https://doi.org/10.1029/94JD01837
  10. Anttila P, Tuovinen JP (2010) Trends of primary and secondary pollutant concentrations in Finland in 1994-2007. Atmos Environ 44:30-41 https://doi.org/10.1016/j.atmosenv.2009.09.041
  11. Archer SD, Ragni M, Webster R, Airs RL, Geider RJ (2010) Dimethyl sulfoniopropionate and dimethyl sulfide production in response to photoinhibition in Emiliania huxleyi. Limnol Oceanogr 55(4):1579-1589 https://doi.org/10.4319/lo.2010.55.4.1579
  12. Bates TS, Lamb BK, Guenther A, Dignon J, Stoiber RE (1992) Sulfur emissions to the atmosphere from natural sources. J Atmos Chem 14:315-337 https://doi.org/10.1007/BF00115242
  13. Bellouin N, Boucher O, Haywood J, Reddy MS (2005) Global estimate of aerosol direct radiative forcing from satellite measurements. Nature 438(7071):1138 https://doi.org/10.1038/nature04348
  14. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655-661 https://doi.org/10.1038/326655a0
  15. Dacey JWH, Blough NV (1987) Hydroxide decomposition of dimethylsuloniopropionate to from dimethylsulfide. Geophys Res Lett 14:1246-1249 https://doi.org/10.1029/GL014i012p01246
  16. Erickson DJ, Ghan SJ, Penner JE (1990) Global ocean-toatmosphere dimethyl sulfide flux. J Geophys Res 95(D6):7543-7552 https://doi.org/10.1029/JD095iD06p07543
  17. Gabric AJ, Ayers G, Murray CN, Parslow J (1996) Use of remote sensing and mathematical modelling to predict the flux of dimethylsulfide to the atmosphere in the Southern Ocean. Adv Space Res 18(7):117-128 https://doi.org/10.1016/0273-1177(95)00954-X
  18. Gabric AJ, Ayers GP, Sander GC (1995) Independent marine and atmospheric model estimates of the sea-air flux of dimethylsulfide in the Southern Ocean. Geophys Res Lett 22(24):3521-3524 https://doi.org/10.1029/95GL02936
  19. Gabric AJ, Simo R, Cropp RA, Hirst AC, Dachs J (2004) Modeling estimates of the global emission of dimethylsulfide under enhanced greenhouse conditions. Glob Biogeochem Cycle 18(2):GB2014. doi:10.1029/2003GB002183
  20. Hobbs PV (1993) In aerosol-cloud-climate ineractions. Academic Press, New York, 233 p
  21. IOCCG (2004) Guide to the creation and use of ocean-color, level-3, binned data product. Antonie D (ed) Reports of the IOCCG, International Ocean-Colour Coordinating Group, Dartmouth, 88 p
  22. IOCCG (2007) Ocean-colour data merging. Gregg W (ed) Reports of the IOCCG, International Ocean-Colour Coordinating Group, Dartmouth, 68 p
  23. Keller MD, Bellows WK, Guillard RRL (1989) Dimethyl sulfide production in marine phytoplankton. In: Saltzman ES, Cooper WJ (eds) Biogenic Sulfur in the Environment. American Chemical Society, Miami, pp 167-182
  24. Kettle AJ, Andreae MO (2000) Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models. J Geophys Res-Atmos 105(D22):26793-26808 https://doi.org/10.1029/2000JD900252
  25. Kim KH, Andreae MO (1992) Carbon disulfide in the estuarine, coastal, and oceanic environments. Mar Chem 40:179-197 https://doi.org/10.1016/0304-4203(92)90022-3
  26. Kloster S, Feichter J, Maier-Reimer E, Six KD, Stier P, Wetzel P (2006) DMS cycle in the marine ocean-atmosphere system-a global model study. Biogeosciences 3(1):29-51 https://doi.org/10.5194/bg-3-29-2006
  27. Kloster S, Six KD, Feichter J, Maier-Reimer E, Roeckner E, Wetzel P, Stier P, Esch M (2007) Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming. J Geophys Res-Biogeo 112(G03005):G03005. doi:10.1029/2006JG000224
  28. Koch D, Jacob D, Tegen I, Rind D, Chin M (1999) Tropospheric sulfur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model. J Geophys Res 104:23799-23822 https://doi.org/10.1029/1999JD900248
  29. Lana A, Bell TG, Simo R, Vallina SM, Ballabrera-Poy J, Kettle AJ, Dachs J, Bopp L, Saltzman ES, Stefels J, Johnson JE, Liss PS (2011) An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochem Cy 25(1):GB1004. doi:10.1029/2010GB003850
  30. Liss PS, Merlivat L (1986) Air-sea gas exchange rates: introduction and synthesis. In: Buat-Menard P (ed) The role of air-sea exchange in geochemical cycling. Reidel Publishing Company, Dordrecht, pp 113-127
  31. Lovelock JE, Maggs RJ, Rasmussen RA (1972) Atmospheric dimethylsulfide and the natural sulphur cycle. Nature 237:452-453 https://doi.org/10.1038/237452a0
  32. Marandino CA, De Bruyn WJ, Miller SD, Saltzman ES (2009) Open ocean DMS air/sea fluxes over the eastern South Pacific Ocean. Atmos Chem Phys 9(2):345-356 https://doi.org/10.5194/acp-9-345-2009
  33. McClain CR, Feldman GC, Hooker SB (2004) An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series. Deep-Sea Res 51(1-3):5-42
  34. Nguyen BC, Mihalopoulous N, Belviso S (1990) Seasonal variation of atmospheric dimethysufide at Amsterdam Island in the southern Indian Ocean. J Atmos Chem 11:123-141 https://doi.org/10.1007/BF00053671
  35. Saltzman ES, King DB, Holmen K, Leck C (1993) Experimental determination of the diffusion coefficient of dimethylsulfide in water. J Geophys Res-Oceans 98(C9):16481-16486 https://doi.org/10.1029/93JC01858
  36. Simmonds PG, Derwent RG, Manning AL, Spain G (2004) Significant growth in surface ozone at Mace Head, Ireland, 1987-2003. Atmos Environ 38(28):4769-4778 https://doi.org/10.1016/j.atmosenv.2004.04.036
  37. Simó R, Dachs J (2002) Global ocean emission of dimethylsulfide predicted from biogeophysical data. Global Biogeochem Cy 16(4):1078. doi:10.1029/2001GB001829
  38. Stefels J, Steinke M, Turner S, Malin G, Belviso S (2007) Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 83(1-3):245-275 https://doi.org/10.1007/s10533-007-9091-5
  39. Varhelyi G (1985) Continental and global sulfur budgets: I. anthropogenic $SO_2$ emissions. Atmos Environ 19(7):1029-1040 https://doi.org/10.1016/0004-6981(85)90186-6
  40. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean, J Geophys Res-Oceans 97(C5):7373-7382 https://doi.org/10.1029/92JC00188
  41. Yang GP, Song YZ, Zhang HH, Li CX, Wu GW (2014) Seasonal variation and biogeochemical cycling of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the Yellow Sea and Bohai Sea. J Geophys Res-Oceans 119(12):8897-8915 https://doi.org/10.1002/2014JC010373