• Title/Summary/Keyword: Surface wave

Search Result 2,996, Processing Time 0.039 seconds

A comparison of the neumann-kelvin and rankine source methods for wave resistance calculations

  • Yu, Min;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.371-398
    • /
    • 2017
  • Calm water wave resistance plays a very important role in ship hull design. Numerical methods are meaningful for this reason. In this study, two prevailing methods, the Neumann-Kelvin and the Rankine source method, were implemented and compared. The Neumann-Kelvin method assumes linearized free surface boundary condition and only needs to mesh the hull surface. The Rankine source method considers nonlinear free surface boundary condition and meshes both the ship hull surface and free surface. Both methods were implemented and the wave resistance of a Wigley III and three Series 60(Cb=0.6, 0.7, 0.8) hulls were analyzed. The results were compared with experimental results and the merits of both numerical techniques were quantified. Based on the results, it is concluded that the Rankine source method is more accurate in the calculation of the wave-making resistance. Using the Neumann-Kelvin method, it is found to be easier to model the hull and can be used for slender ships to solve problems like wave current coupling calculation.

Surface Gravity Waves with Strong Frequency Modulation

  • Lee Kwi-Joo;Shugan Igor V.;An Jung-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.1-6
    • /
    • 2006
  • Modulation theory describes propagation of surface waves with deep wave number and frequency modulation. Locally spectrally narrow wave packet can have accumulated large scale frequency shift of carrier wave during propagation. Some important nonlinear modulation effects, such as negative frequencies, phase kinks, crest pairing, etc., often observed experimentally at long fetch propagation of finite amplitude surface wave trains, are reproduced by the proposed theory. The presented model permits also to analyze the appropriately short surface wave packets and modulation periods. Solutions show the wave phase kinks to arise on areas' of relatively small free surface displacement in complete accordance with the experiments.

A Study on the Application and Dispersion Characteristics Analysis of Surface SH-wave Mode (표면 SH파 모드의 분산특성 해석과 그 응용)

  • 이상용;박익근;윤종학;노승남;안형근
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.61-65
    • /
    • 2001
  • A new flaw detection technique using by SH angle beam method has been discussed. The SH-wave is horizontally polarized shear wave and the surface SH wave has a characteristic of traveling along near surface layer. The surface SH wave technique is valuable for the detection of fatigue cracks at fillet weld heels which cannot be detected by other ultrasonic technique such as angle beam technique and The dispersion curves of it has simple characterization. In this work, using these beneficial chraterization, quality evaluation of spot weld with ultrasonic sound intensity of SH-wave passing through nugget area of spot weld are verified experimentally.

  • PDF

NUMERICAL SIMULATIONS OF FULLY NONLINEAR WAVE MOTIONS IN A DIGITAL WAVE TANK (디지털 파랑 수조 내에서의 비선형 파랑 운동의 수치시뮬레이션)

  • Park, J.C.;Kim, K.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.90-100
    • /
    • 2006
  • A digital wave tank (DWT) simulation technique has been developed by authors to investigate the interactions of fully nonlinear waves with 3D marine structures. A finite-difference/volume method and a modified marker-and-cell (MAC) algorithm have been used, which are based on the Navier-Stokes (NS) and continuity equations. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique or the Level-Set (LS) technique developed for one or two fluid layers. In this paper, some applications for various engineering problems with free-surface are introduced and discussed. It includes numerical simulation of marine environments by simulation equipments, fully nonlinear wave motions around offshore structures, nonlinear ship waves, ship motions in waves and marine flow simulation with free-surface. From the presented simulations, it seems that the developed DWT simulation technique can handle various engineering problems with free-surface and reliably predict hydrodynamic features due to the fully-nonlinear wave motions interacting with such marine structures.

A Study on Phenomena of Sea Propagation Considering Surface Wave (표면파 성분을 고려한 해면전파 현상에 관한 연구)

  • 서덕수;이민수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.5
    • /
    • pp.376-383
    • /
    • 1996
  • In general, the electromagnetic field analysis of a vertical dipole mainly deals with the space. wave. But when only the space wave is considered, as a receiving point is close to the surface of medium, the receiving electric field strength is rapidly decreased. In this paper, to solve this problem, we considered both the surface wave and the space wave contribution. When the vector potential is used with the angular spectrum transformation method, the space wave and the surface wave are included in the final electric field expression. By using this final electric field expression, the effect of the surface wave is analyzed through simulations and the factors having effect on a propagation phenomenon of sea surface are studied in detail. Also, the justification of the theoretical formula was proved by comparing theoretical values with measuring ones at 880. 2MHz which is the frequency of mobile communication.

  • PDF

Comparison of Shear-wave Velocity Sections from Inverting SH-wave Traveltimes of First Arrivals and Surface Wave Dispersion Curves (SH파 초동주시 역산과 표면파 분산곡선 역산으로부터 구한 횡파속도 단면 비교)

  • Lee, Chang-Min;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2005
  • Two-dimensional S-wave velocity sections from SH-wave refraction tomography and surface wave dispersions were obtained by inverting traveltimes of first arrivals and surface wave dispersions, respectively. For the purpose of comparison, a P-wave velocity tomogram was also obtained from a P-wave refraction profiling. P and Rayleigh waves generated by vertical blows on a plate with a sledgehammer were received by 100- and 4.5-Hz geophones, respectively. SH-waves generated by horizontal blows on both sides of a 50 kg timber were received by 8 Hz horizontal geophones. The shear-wave signals were enhanced subtracting data of left-side blows from ones of the right-side blows. Shear-wave velocities from tomography inversion of first-arrival times were compared with ones from inverting dispersion curves of Rayleigh waves. Although the two velocity sections look similar to each other in general, the one from the surface waves tends to have lower velocities. First arrival picking of SH waves is troublesome since P and PS-converted waves arrive earlier than SH waves. Application of the surface wave method, on the other hand, is limited where lateral variation of subsurface tructures is not mild.

  • PDF

The Significance of Current-effect on Analysis of Wave Data Obtained from a Subsurface Pressure Gauge (수압식 파고계 자료 분석에서 유속의 영향)

  • Lee, Dong-Young;Oh, Sang-Ho
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.389-399
    • /
    • 2009
  • Subsurface pressure gauge has many advantages in measuring a wide range of wave spectra in coastal waters from wind waves to long waves. However, a shortcoming of the gauge is related to the difficulties in recovering surface wave spectra from subsurface pressure records. In this study, the effect of current on the pressure transfer function of the pressure gauge, and hence on the surface wave energy spectrum, was investigated by analyzing the subsurface pressure data based on the linear wave theory. For this purpose, laboratory experiments were carried out in a wave-current flume. Subsurface pressure records, as well as the surface elevation data, were obtained simultaneously under different wave and current conditions. Pressure transfer functions were obtained and compared with those estimated from the linear wave theory, both with and without inclusion of the current-effect. It was established that wave spectra obtained from subsurface pressure gauge were in closer agreement with those from surface wave gauge when current-effect on the pressure transfer function was taken into consideration for analysis.

The effect of root canal preparation on the surface roughness of WaveOne and WaveOne Gold files: atomic force microscopy study

  • Ozyurek, Taha;Yilmaz, Koray;Uslu, Gulsah;Plotino, Gianluca
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.1
    • /
    • pp.10.1-10.8
    • /
    • 2018
  • Objectives: To examine the surface topography of intact WaveOne (WO; Dentsply Sirona Endodontics) and WaveOne Gold (WOG; Dentsply Sirona Endodontics) nickel-titanium rotary files and to evaluate the presence of alterations to the surface topography after root canal preparations of severely curved root canals in molar teeth. Materials and Methods: Forty-eight severely curved canals of extracted molar teeth were divided into 2 groups (n = 24/each group). In group 1, the canals were prepared using WO and in group 2, the canals were prepared using WOG files. After the preparation of 3 root canals, instruments were subjected to atomic force microscopy analysis. Average roughness and root mean square values were chosen to investigate the surface features of endodontic files. The data was analyzed using one-way analysis of variance and post hoc Tamhane's tests at 5% significant level. Results: The surface roughness values of WO and WOG files significantly changed after use in root canals (p < 0.05). The used WOG files exhibited higher surface roughness change when compared with the used WO files (p < 0.05). Conclusions: Using WO and WOG Primary files in 3 root canals affected the surface topography of the files. After being used in root canals, the WOG files showed a higher level of surface porosity value than the WO files.

A Study on Feasibility of Surface Wave Application for the Assessment of Physical Properties of Dam (표면파 적용 댐체 물성 조사 타당성 연구)

  • Kim, Hyoung-Soo;Min, Dong-Ju;Kim, Jung-Yul;Ha, Ik-Soo;Oh, Suk-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.384-391
    • /
    • 2005
  • Three dimensional finite difference elastic wave model was developed to estimate the feasibility of surface wave applications in geotechnical problems. The wave motions calculated by the developed program in this study shows good agreement with well known analytic solutions. The surface wave motions calculated from layered dam type structure can be interpreted as a infinite layer structure using dispersion curve but it is need a special source of which high energy in frequency band lower than 10 Hz to get information of physical properties in few tens meter deep. The source which has high energy in the low frequency band, however, can give defect on dam and this will make some limitation in real field applications. The dispersion curves calculated from the surface wave motion of homogeneous and center core type dam models will give rise to fatal errors if the conventional infinite layer structure used in their interpretation because the surrounding materials and boundaries of dam make some distortion in dispersion curve of surface wave. So it is strongly recommended to use three dimensional inversion model for correct interpretation and estimation of physical properties of dam materials.

  • PDF

Full-Wave Calculation of the Complex Input Impedance of Microstrip Line Used for Magnetostatic Surface Wave Transducers (정자표면파 트랜스듀서용 마이크로스트립 선로의 복소 입력 임피던스 Full-Wave 계산)

  • 이재현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.345-352
    • /
    • 2004
  • The radiation impedance of a magnetostatic surface wave excited in a microstrip line haying ferrite film and its dependence on the width of the microstrip line and the height of the ferrite film are calculated by the full-wave moment analysis. The radiation resistance calculated by the full-wave analysis closely agrees with the measured radiation resistance, while that by the magnetostatic approximation greatly differs from the measured result in the higher-frequency region.