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Surface Gravity Waves with Strong Frequency Modulation
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ABSTRACT: Modulation theory describes propagation of surface waves with deep wave number and frequency modulation. Locally spectrally
narrow wave packet can have accumulated large scale frequency shift of carrier wave during propagation. Some important nonlinear modulation
effects, such as negative frequencies, phase kinks, crest pairing, etc., often observed experimentally at long fetch propagation of finite amplitude
surface wave trains, are reproduced by the proposed theory. The presented model permits also to analyze the appropriately short surface wave
packets and modulation periods. Solutions show the wave phase kinks to arise on areas’ of relatively small free surface displacement in complete

accordance with the experiments.

1. Introduction

For the past two decades experiments on the nonlinear
wave propagation on water surfaces have revealed a number
of modulation effects that have not been explained by
theorists. Lake and Yuen (1978) were the first who observed
the wave crests ‘lost’ at a quasi-zero amplitude (node) of
deeply modulated wave trains. Then a similar effect was
found by Ramamonjiarisoa and Mollo-Christensen (1979),
Mollo-Christe ‘msen and Ramamonjiarisoa (1982)
Chereskin, T., Mollo-Christensen, E. (1985) in wind sea
waves and under laboratory conditions: a nonlinear surface

and

wave merged with the foregoing one and then disappeared.
As a result of such a ’crest pairing’ the wave period is
doubled instantaneously by Yuen, H. and Lake, B. (1975).
Melville (1983) investigated thoroughly the evolution of
an initially uniform train of Stokes surface waves in a long
laboratory tank. At the wave fetch beginning, he observed
the development of the well-known Benjamin-Feir (1967)
sideband instability resulting in weak amplitude-frequency
modulation of the wave train. As nonlinear effects
accumulated along the tank, an asymmetry arose in the
wave envelope related to its maximum. The relative phase
between modulations of wave amplitude and frequency also
changed, the amplitude was modulated with phase opposite
to that of frequency modulation. At a longer distance,
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Melville observed the most prominent features of that mode,
the so-called phase ‘reversals’ accompanied by very large
variations in the wave number, frequency and phase
velocity. In particular, the frequency turned out even to be
negative near these local phase kinks.

The main goal of the present paper is to derive and
study a general set of the third order equations for slowly
modulated wave trains propagating on the surface of deep
water. As distinct from other works, the proposed model
should allow for a variety of uniformly valid solutions with
the wave number and frequency having relative variations
of the order of unit over the ‘slow’ coordinate and time.

The paper is organized in the following manner. Section
2 contains the problem’s initial statement including its
scaling and assumptions necessary to derive the governing
modulation equations for the first order potential amplitude,
wave number and frequency. Restricted traveling surface
wave solutions are found and qualitatively analyzed in
section 3 with the use of the phase plane of potential and
velocity amplitudes, depending on the fluxes of wave energy
and action, as well as on the frequency detuning from the
group resonance. Various wave modulation regimes are
exhibited and discussed in section 4. In section 5 we
present concluding remarks.

2. Main Equations

The set of equations for potential motion of an ideal
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incompressible infinite-depth fluid with the free surface is
given by the Laplace equation

Gpe+ .. =0 —o0 < z< n(zt) 1)
the boundary conditions at the free surface.
2 24 _
¢t+977+1/2(¢$+¢Z)—0,Z=Tl(iﬂ,t) 22

and at the bottom

¢ = 0 > zZ=—00 (2‘ )
Here ¢ (z,2,t) and n(x,2,t) are the velocity potential

and the free surface displacement.

Let us normalize the variables as follows:

¢ =ayy gkot =€ 9k30 ¢, n=aem = ekyy,

t=1/gkt' 2z=7k, z=1k, (2.5)

where € = agky is the conventional average wave steepness

parameter, and the dimentionless quantities are primed.
Then, the set Eq. (21)~Eq. (24) is reduced to the form.

¢zz+¢zz:0 , — o< Z<€77(£E,t) (26)
—n=¢, 41262 +62) , z=anzt) 27)
nt+e¢znz:¢z ’ Zzﬁn(m;t) (28)
&=0, z=—o0 2.9)

where the primes are omitted. Further analysis is based on
the assumption of small parameter € < 1, therefore the
weakly nonlinear surface wave train is described by a
solution to Eg. (2.6), Eq. (2.9) expanded into a Stokes series
in terms of €.

Assuming also the wave motion phase 6 =6 (z,t), we
define the wave number and frequency in the usual way as
k=60, w=—20, (210

These main wave parameters will be considered further
as slowly varying with the characteristic scale Of(e¢™')

longer than the primary wavelength and period (Chu and
Mei 1970):

bo=do(ex,et), k=k(ex,et), w=w(ex,et) (2.11)

The solution to the problem, uniformly valid to 0(é), is
found by a two-scale expansion with the differentiation

8/t = wd /00 +€8,/6T,0,/6x = kd /60 + €8/0X

(2.12)
T=et,X =¢x
We search the velocity potential in the form:
¢ = goe™sind + e (yz + 622)e*cos + ... (213)

Substituting potential Eq. (213) into the Laplace Eq. (2.6)
and equating the coefficients at the same orders in €, we
find directly the modulational corrections to the vertical
velocity profile

12k, . (2.14)

v = ¢Oz: 6 =—
\ The free surface displacement n=n(z,t) is also sought
as an asymptotic series,
n=1o+en+en+t .. (2.15)

Substitution of velocity potential Eq. (213), Eq. (214) into

the kinematic boundary condition Eq. (2.8) gives the
following  relatonships ~ between  the  modulation
characteristics:
w? = K+ w’K*¢g + orr/ by, (216)
(wgo) ;+wdor+ dox =0 217)

The first of these formulas, representing the dispersion

relaion with the total second-order amplitude-phase
dispersion included, simplifies to
w? =k + KPS+ borr/ Do - (218)

Eq. (217) yields the known wave action conservation law.

(weg) + % (¢¢),=0 (2.19)

Modulation Eq. (2.18) and Eq. (2.19) are closed the wave
phase conservation that follows from Eq. (210) as a
compatibility condition
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kr+wx=0 (2.20)

Closed set Eq. (218), Eq. (220) defines all three
unknown modulation functions: the order potential amplitude,
wave number and frequency.

3. Travelling Wave Solution

Let us find traveling wave solutions to the problem Eq.
(218) and Eq. (2.20), supposing all the unknown functions
to depend on the single variable { = X—c¢7" , where ¢ is

the velocity of a reference frame where the waves are
stationary. Then, after integrating Eq. (219) and Eq. (2.20)
the problem has the form

w?= k+k4¢(2)+02¢05§/¢0
(— cw + 1/2)¢g = A;
—ck+w=1

@1)
32)
(33)

where A and (2 are the integration free constants. We
renormalize the constants and variables by following way:

A=A, ¢=C",, €=, A=12-c (39

Now, omitting tildes we write down the main equation to
be analyzed:

Boge = B0 (1/2 = Ad})* — o (& — AdF) — $§ (& — A¢5 ) (35)
We note at once that Eq. (3.5) has the first integral

Pt =— 1204+ 124 5+ (L/A— & +4054) 85
— A2 — AL APE— 1202 AIngy + E (3.6)

The structure of this solution to Eq. (3.5) allows us to
consider the phase plane (Fig. 1).

The sought solutions form a family with two main types
of trajectories:
() close type I curves that describe periodic structure
behavior of velocity amplitude, surface displacement and
frequency functions
(i) type Il curves which are singular at the point ¢ =10
with infinite horizontal velocities ¢g—>c0.

The integral cycles 1 of Fig. 1 are defined by two real

doz

Fig. 1 Phase curves of Eq. (3.6):
(1) periodic solutions;
(2) solutions with singularity in the origin;
(3) solitary solutions;
(4) NSE soliton solution (4=0, £=0)

4
5k
. NSE 05
10 05 0 05
2k
4l

Fig. 2 Plane of parameters for Eq. (3.8). Constricted
solutions exist for the region between curves. Solid

line describes solutions of NSE equation

roots of the equation

boge =0 37)
solution exists in the region of parameters A4 and A
between two curves plotted in Fig. 2.

Pointing to the existence of two extremes for the
right-hand of Eq. (36),

side which mean periodic
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modulation of the fluid velocity amplitude.
After excluding the trivial root ¢y =0, Eq. (3.7) takes the

form of the quadratic equation in the squared variable ¢g.

2
14-A+ L _gra-4y—o

3.8
P 2 ¢8)

Solving Eq. (3.8) one can find that periodic constricted.
4. Analysis of Solutions and Discussion

All properties of the restricted traveling wave solutions
are analyzed by integrating Eq. (3.6) in quadrature for
combinations of the three controlling parameters
(N,A,E). The most interesting stationary solutions are
illustrated by the plots of modulation parameters: the
reduced wave frequency

various

_1,1 4
w(§)==(5 e ) @1
and phase

_ 1 f1__4
@)= [y - e (42)

as well as by the profiles of two lowest harmonics of the
free displacement:

43)
(44)

77(1) (&) = wepycosh — copesind — 3 Bk P diacost
n® (&) = 1/2kwPicos20

Let us first consider using concrete examples the main
properties of permanent form periodic solutions for the
positive wave action flux A > 0, when the group velocity
exceeds the velocity of observer, ¢,= (2w) ' >c¢ In this

case, it follows from Eg. (41) that the instantaneous
frequency is higher for larger wave amplitudes. Thus as
nonlinear effects grow quite slowly (quasi-stationary) at a
constant and positive wave action flux, one should observe
a specific average frequency upshift in traveling surface
waves.

We will start our
self-modula ted solutions to the classical NSE equation. Fig,
3 shows two lowest harmonics of the surface profile
together with the reduced frequency and phase for the
following parameters: 4 = 0.30, A =0.22, £= 0.

consideration from the wave
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Fig. 3 Surface waves modulation for A4=0.30, A =0.22,
E =0, (a) surface profile for first harmonics,
(b) surface profile for second harmonics,

(6) frequency,
(d) phase of the first harmonics

One sees from Fig. 3 that the wave system as a whole
is modulated smoothly in a regular manner close to the
NSE-type “cnoidal’ envelope because the amplitude of wave
noticeably exceeds the critical value.

According to the previous analysis, we expect a deep
wave modulation to ’smooth’ quasi-periodically the water
free surface if the integral cycle approaches the critical line
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Fig. 4 Surface waves modulation for A =0.35, A=—0.3,
E=02, €=015 (a) surface profile for first
harmonics, (b) surface profile for second harmonics,
(¢) frequency, (d) phase of the first harmonics,

(e) experiment results of Melville(1983)

¢o. = (24)"2 on the phase plane. Such a wave mode is

shown in Fig. 4 for parameters A =0.35,4A=—0.,

E =02, e=0.15 A solution of this type has all the main
of the phase observed in the
experiments by Melville (1983)(Fig. 4e): the wave frequency
(Fig. 5c) locally drops from the almost
cw =~ 048 to zero, while the phase (Fig. 5d) has sharp
kinks localized exactly at the minimum of surface elevation.

indications reversals

maximum

The phase delays of order 7/2 take approximately one wave
petiod, during which the wave crests are merging together.

5. Concluding Remarks

We have analyzed various types of permanent envelopes
traveling on the surface of deep water, which can be
treated as solutions to the equations of the third order
approximation in wave steepness, assuming the wave
number and frequency variations are not small. Some
important nonlinear modulation effects, such as negative
frequencies, phase kinks, crest pairing, etc., often observed
experimentally at long-fetch propagation of finite-amplitude
surface wave trains, are reproduced by the proposed
theory. The observation of various deeply modulated wave
motions predicted in this paper is of general interest. The
simply scaled model free parameters can facilitate the
choice of dynamic and kinematics wave characteristics
appropriate for a relevant laboratory experiment as well as
the search for optimum conditions for the field wave
measurements.
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