• Title/Summary/Keyword: Surface treatment of Cu

Search Result 353, Processing Time 0.024 seconds

Study on the chemical activation process from PVDC-resin with CuO agent to synthesize mesoporous carbon for supercapacitor electrodes (Supercapacitor 전극용 최적의 mesoporous carbon 합성을 위한 PVDC-resin 전구체로 부터 CuO를 이용한 화학적 활성화 과정 연구)

  • Sang-Eun Chun
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.4
    • /
    • pp.285-295
    • /
    • 2024
  • PVDC-resin transforms into porous carbon through the removal of heteroatoms during heat treatment. When PVDC-resin mixed with chemical agent undergoes heat treatment, it transforms into porous carbon with a significant surface area. In this study, we aim to produce porous carbon using PVDC-resin as a precursor by mixing it with an inexpensive CuO agent in various ratios (1:1, 1:2) and varying the process temperatures (750℃, 950℃). To utilize the developed porous carbon as electrode for supercapacitors, this study explored the formation of micropores and mesopores during the activation process. The porous characteristics and specific surface area of the synthesized porous carbon were estimated using N2 isotherm. The specific capacitance and rate capability required for supercapacitor electrodes were evaluated through cyclic voltammetry. Experimental results demonstrated that when the precursor and agent were mixed in a 1:2 ratio, a high surface areal carbon with numerous micropores and mesopores was obtained. When the activation was performed at 950℃, no impurities remained from the agent, resulting in high rate performance. The porous carbon synthesized using PVDC-resin and CuO demonstrated high specific surface area and excellent rate capability, indicating its potential as an electrode material for supercapacitors.

Wet Etching Characteristics of Cu Surface for Cu-Cu Pattern Direct Bonds (Cu-Cu 패턴 직접접합을 위한 습식 용액에 따른 Cu 표면 식각 특성 평가)

  • Park, Jong-Myeong;Kim, Yeong-Rae;Kim, Sung-Dong;Kim, Jae-Won;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Three-dimensional integrated circuit(3D IC) technology has become increasingly important due to the demand for high system performance and functionality. In this work, BOE and HF wet etching of Cu line surfaces after CMP were conducted for Cu-Cu pattern direct bonding. Step height of Cu and $SiO_2$ as well as Cu dishing after Cu CMP were analyzed by the 3D-Profiler. Step height increased and Cu dishing decreased with increasing BOE and HF wet etching times. XPS analysis of Cu surface revealed that Cu surface oxide layer was partially removed by BOE and HF wet etching treatment. BOE treatment showed not only the effective $SiO_2$ etching but also reduced dishing and Cu surface oxide rather than HF treatment, which can be used as an meaningful process data for reliable Cu-Cu pattern bonding characteristics.

A Study on the Surface Pre-treatment of Palladium Alloy Hydrogen Membrane (팔라듐 합금 수소 분리막의 전처리에 관한 연구)

  • Park, Dong-Gun;Kim, Hyung-Ju;Kim, Hyo Jin;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.248-256
    • /
    • 2012
  • A Pd-based hydrogen membranes for hydrogen purification and separation need high hydrogen perm-selectivity. The surface roughness of the support is important to coat the pinholes free and thin-film membrane over it. Also, The pinholes drastically decreased the hydrogen perm-selectivity of the Pd-based composite membrane. In order to remove the pinholes, we introduced various surface pre-treatment such as alumina powder packing, nickel electro-plating and micro-polishing pre-treatment. Especially, the micro-polishing pretreatment was very effective in roughness leveling off the surface of the porous nickel support, and it almost completely plugged the pores. Fine Ni particles filled surface pinholes with could form open structure at the interface of Pd alloy coating and Ni support by their diffusion to the membrane and resintering. In this study, a $4{\mu}m$ surface pore-free Pd-Cu-Ni ternary alloy membrane on a porous nickel substrate was successfully prepared by micro-polishing, high temperature sputtering and Cu-reflow process. And $H_2$ permeation and $N_2$ leak tests showed that the Pd-Cu-Ni ternary alloy hydrogen membrane achieved both high permeability of $13.2ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ permation flux and infinite selectivity.

Optimal pressure and temperature for Cu-Cu direct bonding in three-dimensional packaging of stacked integrated circuits

  • Seunghyun Yum;June Won Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.180-184
    • /
    • 2023
  • Scholars have proposed wafer-level bonding and three-dimensional (3D) stacked integrated circuit (IC) and have investigated Cu-Cu bonding to overcome the limitation of Moore's law. However, information about quantitative Cu-Cu direct-bonding conditions, such as temperature, pressure, and interfacial adhesion energy, is scant. This study determines the optimal temperature and pressure for Cu-Cu bonding by varying the bonding temperature to 100, 150, 200, 250, and 350 ℃ and pressure to 2,303 and 3,087 N/cm2. Various conditions and methods for surface treatment were performed to prevent oxidation of the surface of the sample and remove organic compounds in Cu direct bonding as variables of temperature and pressure. EDX experiments were conducted to confirm chemical information on the bonding characteristics between the substrate and Cu to confirm the bonding mechanism between the substrate and Cu. In addition, after the combination with the change of temperature and pressure variables, UTM measurement was performed to investigate the bond force between the substrate and Cu, and it was confirmed that the bond force increased proportionally as the temperature and pressure increased.

Fracture Toughness of Leadframe/EMC Interface (리드프레임/EMC 계면의 파괴 인성치)

  • 이호영;유진
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.6
    • /
    • pp.647-657
    • /
    • 1999
  • Due to the inherently poor adhesion strength of Cu-based leadframe/EMC (Epoxy Molding Compound) interface, popcorn cracking of thin plastic packages frequently occurs during the solder reflow process. In the present work, in order to enhance the adhesion strength of Cu-based leadframe/EMC interface, black-oxide layer was formed on the leadframe surface by chemical oxidation of leadframe, and then oxidized leadframe sheets were molded with EMC and machined to form SDCB (Sandwiched Double-Cantilever Beam) and SBN (Sandwiched Brazil-Nut) specimens. SDCB and SBN specimens were designed to measure the adhesion strength between leadframe and EMC in terms of critical energy-release rate under quasi-Mode I ($G_{IC}$ ) and mixed Mode loading ($G_{C}$ /) conditions, respectively. Results showed that black-oxide treatment of Cu-based leadframe initially introduced pebble-like X$C_2$O crystals with smooth facets on its surface, and after the full growth of $Cu_2$O layer, acicular CuO crystals were formed atop of the $Cu_2$O layer. According to the result of SDCB test, $Cu_2$O crystals on the leadframe surface did not increase ($G_{IC}$), however, acicular CuO crystals on the $Cu_2$O layer enhanced $G_{IC}$ considerably. The main reason for the adhesion improvement seems to be associated with the adhesion of CuO to EMC by mechanical interlocking mechanism. On the other hand, as the Mode II component increased, $G_{C}$ was increased, and when the phase angle was -34$^{\circ}$, crack Kinking into EMC was occured.d.

  • PDF

Gas sensing properties of CuO nanowalls synthesized via oxidation of Cu foil in aqueous NH4OH (NH4OH 수용액 하에서 Cu 호일의 산화를 통해 합성한 CuO 나노벽의 가스센싱 특성)

  • ;;;Lee, Si-Hong;Lee, Sang-Uk;Lee, Jun-Hyeong;Kim, Jeong-Ju;Heo, Yeong-U
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.141-141
    • /
    • 2018
  • Copper is one of the most abundant metals on earth. Its oxide (CuO) is an intrinsically p-type metal-oxide semiconductor with a bandgap ($E_g$) of 1.2-2.0 eV 1. Copper oxide nanomaterials are considered as promising materials for a wide range of applications e.g., lithium ion batteries, dye-sensitized solar cells, photocatalytic hydrogen production, photodetectors, and biogas sensors 2-7. Recently, high-density and uniform CuO nanostructures have been grown on Cu foils in alkaline solutions 3. In 2011, T. Soejima et al. proposed a facile process for the oxidation synthesis of CuO nanobelt arrays using $NH_3-H_2O_2$ aqueous solution 8. In 2017, G. Kaur et al. synthesized CuO nanostructures by treating Cu foils in $NH_4OH$ at room temperature for different treatment times 9. The surface treatment of Cu in alkaline aqueous solutions is a potential method for the mass fabrication of CuO nanostructures with high uniformity and density. It is interesting to compare the gas sensing properties among CuO nanomaterials synthesized by this approach and by others. Nevertheless, none of above studies investigated the gas sensing properties of as-synthesized CuO nanomaterials. In this study, CuO nanowalls versus nanoparticles were synthesized via the oxidation process of Cu foil in NH4OH solution at $50-70^{\circ}C$. The gas sensing properties of the as-prepared CuO nanoplates were examined with $C_2H_5OH$, $CH_3COCH_3$, and $NH_3$ at $200-360^{\circ}C$.

  • PDF

Peel Strength Analyses of Copper/Epoxy System (구리/에폭시 계의 필 접착력 분석)

  • 최광성;유진;이호영
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.4
    • /
    • pp.238-252
    • /
    • 1996
  • In order to study the effect of interface oxides on the adhesion strength of the copper/epoxy system, copper foils were immersed in black oxide or brown oxide forming solutions before lamination with epoxy prepregs, and variation of peel strength with the treatment time were investigated. Results showed that peel strength decreased rapidly up to 1 minute of treatment lime and remained constant in the case of the black oxide treated specimens, which was accompanied by the thickening of $Cu_2O$ at the Copper/Epoxy interface during the period. In contrast, peel strength increased rapidly up to 1 minute of treatment time and remained constant in the case of the brown oxide treated specimens, which could be ascribed to the thickening of CuO. Subsequent heat treatments of the Copper/Epoxy laminations at $120^{\circ}C$ in air showed that peel strength remained constant in the case of the black oxide treated specimens but decreased gradually in the case of the brown oxide treated specimens. Following XPS analyses revealed that the latter was possibly caused by the coalescence of CuO at the Copper/Epoxy interface into $Cu_2O$.

  • PDF

A Study on the Electroless Ni-Cu-P Alloy Plating of Al Base Hard Disk(I)Effect on some Properties of Electroless Ni-Cu-P Deposits by Electrolyte and Heat Treatment Condition (알루미늄 기판의 무전해 니켈-구리-인 합금도금에 관한 연구(I) 전해액 및 열처리 조건이 무전해 니켈-구리-인 도금층의 제 물성에 미치는 영향)

  • 오이식;황용길
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.2
    • /
    • pp.103-113
    • /
    • 1991
  • Electroless Ni-Cu-P alloy plating of Al base hard disk was performed to investigate some properties according to the change of composition. It was found that the composition of Ni and Cu in deposits changed linearly with increasing the mole ratio of NiSO4.6H2O/CuSO4.5H2O. The increase in hardness by heat - treatment was confirmed to be associated with small size grained crystallization of the amorphous deposits. Acid resistance of all deposits layer. which had been heated up to 30$0^{\circ}C$, was found to be exellent when immersed in 1N-H2SO4 solution, and it showed more superior acid resistance with decreasing Cu content and with increasing P. The resistivity of the deposits heat treated became smaller at temperature more than 50$0^{\circ}C$, and it became largerly with increasing P content. Cu 44.1wt% alloy(C bath) showed the most superior non-magnetically stable characteristics after heat treatment. It was superiorly with higher temperature and with decreasing P content.

  • PDF