• Title/Summary/Keyword: Surface texturing

Search Result 253, Processing Time 0.027 seconds

Investigation of anisotropic texturing for silicon solar cells with sodium carbonate solutions (탄산나트륨용액을 이용한 실리콘 태양전지의 이방성 텍스쳐링에 관한 연구)

  • Lee, Eun-Joo;Kim, Do-Wan;Lee, Hyun-Woo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.177-178
    • /
    • 2006
  • We investigate anisotropic texturing method for crystalline silicon solar cells with sodium carbonate solutions. Texturing temperature have a large effect on the density of pyramid. The dependence of the surface reflectance on solution temperature and the etching time was investigated. The surface morphology was observed by scanning electron microscope and the surface reflectance was evaluated. The reflection from the silicon surface in the wavelength range 400 to 1000nm is reduced to about 12%.

  • PDF

Texturing of Two Adhered Wafers for High Efficiency Crystalline Silicon Solar Cells (웨이퍼 접착 텍스쳐링을 이용한 결정질 실리콘 태양전지 고효율화 연구)

  • Lim, Hyoung-Rae;Joo, Gwang-Sik;Roh, Si-Cheol;Choi, Jeong-Ho;Jung, Jong-Dae;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.21-25
    • /
    • 2014
  • The texturing is one of the most important processes for high efficiency crystalline silicon solar cells. The rear side flatness of silicon solar cell is very important for increasing the light reflectance and forming uniform back surface field(BSF) region in manufacturing high efficiency crystalline silicon solar cells. We investigated texturing difference between front and rear side of wafer by texturing of two adhered wafers. As a result, the flatter rear side was obtained by forming less pyramid size compared to the front side and improved reflectance of long wavelength and back surface field(BSF) region were also achieved. Therefore, the texturing of two adhered wafers can be expected to improve the efficiency of silicon solar cells due to increased short circuit current(Isc).

Analyzing Friction Coefficient and Wettability of Micro-Dimple Fabricated Using Elliptical Vibration Texturing Method (이중 주파수 타원형 진동 궤적법 기반 마이크로 딤플의 마찰계수 및 습윤성 분석)

  • Park, Gun Chul;Ko, Tae Jo;Kurniawan, Rendi;Ali, Saood
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.38-44
    • /
    • 2020
  • Surface texturing of micro-dimples has been used in many manufacturing industries to reduce friction between two sliding contacted surfaces. Surface texturing decreases the frictional force owing to minimizing of the sliding contact area. In this paper, micro-dimples have been fabricated on an Al6061-T6 surface using a two-frequency elliptical vibration texturing (TFEVT) method. A high-frequency of 18 kHz and low-frequency of 250 Hz were applied to an elliptically-vibrated tool holder. The Stribeck curve was plotted to analyze the friction coefficient trends. Furthermore, the representative wetting index, such as the water contact angle (WCA), was measured by considering the friction coefficient. WCA is associated with micro-dimple density and associated parameters. Consequently, the dimpled surfaces with a low friction coefficient exhibited a relatively high WCA in the feed direction. According to the Stribeck curve, the dimpled surfaces demonstrate superior friction performance for mixed-film lubrication compared to the non-textured surface.

Silicon surface texturing for enhanced nanocrystalline diamond seeding efficiency (나노결정질 다이아몬드 seeding 효율 향상을 위한 silicon 표면 texturing)

  • Park, Jong Cheon;Jeong, Ok Geun;Kim, Sang Youn;Park, Se Jin;Yun, Young-Hoon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.86-92
    • /
    • 2013
  • $SF_6/O_2$ inductively coupled plasmas were employed to texture Si surface as a pretreatment for nanocrystalline diamond film growth. It was found that the $SF_6/O_2$ plasma texturing provided a very wide process window where normalized roughness values in the range of 2~16 could be obtained. Significantly improved nucleation densities of ${\sim}6.5{\times}10^{10}cm^{-2}$ compared to conventional mechanical abrasion were achieved after seeding for the textured Si substrate.

Experiment Design Parameter for the Effect of Surface Texturing on Metal Surface (금속표면의 Surface texturing 효과에 대한 실험적 설계변수)

  • Chae Y.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1145-1150
    • /
    • 2005
  • The aim of this paper is to investigate the effect of surface texturing on metal surface and to understand the potential of friction reduction through micro-scale dimple to fabricate by photolithography on pin-on-disk test using flat-on-flat contact geometry. It was verify that the friction property with respect to the same pitch has been influence on the size of dimple under lubricated sliding contact. Also, we can recognize from Stribeck curve that the friction property has a connection with the size of dimple. It can explain a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. The friction property has been an effect on the size of surface texture on reduction friction, not only because the density of dimple, but also because the ratio of diameter/pitch. This ratio of approximately 0.5 is recommend under the tested friction condition. It suggested that the ratio of d/p is an important parameter for surface texture design.

  • PDF

Influence of Surface Texturing on the Electrical and Optical Properties of Aluminum Doped Zinc Oxide Thin Films

  • Lee, Jaeh-Yeong;Shim, Joong-Pyo;Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.461-465
    • /
    • 2011
  • An aluminum doped zinc oxide (AZO) film for front contacts of thin film solar cells, in this work, were deposited by r.f. magnetron sputtering, and then etched in diluted hydrochloric acid solution for different times. Effects of surface texturing on the electro-optical properties of AZO films were investigated. Also, to clarify the light trapping of textured AZO film, amorphous silicon thin film solar cells were fabricated on the textured AZO/glass substrate and the performance of solar cells were studied. After texturing, the spectral haze at the visible range of 400 ~750 nm increased substantially with the etching time, without a change in the resistivity. The conversion efficiency of amorphous Si solar cells with textured AZO film as a front electrode was improved by the increase of short-circuit current density ($J_{sc}$), compared to cell with flat AZO films.

Study of Low Reflectance and RF Frequency by Rie Surface Texture Process in Multi Crystall Silicon Solar Cells (공정가스와 RF 주파수에 따른 웨이퍼 표면 텍스쳐 처리 공정에서 저반사율에 관한 연구)

  • Yun, Myoung-Soo;Hyun, Deoc-Hwan;Jin, Beop-Jong;Choi, Jong-Young;Kim, Joung-Sik;Kang, Hyoung-Dong;Yi, Jun-Sin;Kwon, Gi-Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.114-120
    • /
    • 2010
  • Conventional surface texturing in crystalline silicon solar cell have been use wet texturing by Alkali or Acid solution. But conventional wet texturing has the serious issue of wafer breakage by large consumption of wafer in wet solution and can not obtain the reflectance below 10% in multi crystalline silicon. Therefore it is focusing on RIE texturing, one method of dry etching. We developed large scale plasma RIE (Reactive Ion Etching) equipment which can accommodate 144 wafers (125 mm) in tray in order to provide surface texturing on the silicon wafer surface. Reflectance was controllable from 3% to 20% in crystalline silicon depending on the texture shape and height. We have achieved excellent reflectance below 4% on the weighted average (300~1,100 nm) in multi crystalline silicon using plasma texturing with gas mixture ratio such as $SF_6$, $Cl_2$, and $O_2$. The texture shape and height on the silicon wafer surface have an effect on gas chemistry, etching time, RF frequency, and so on. Excellent conversion efficiency of 16.1% is obtained in multi crystalline silicon by RIE process. In order to know the influence of RF frequency with 2 MHz and 13.56 MHz, texturing shape and conversion efficiency are compared and discussed mutually using RIE technology.

Experimental Study on Micro-Scale Surface Texturing for Friction Reduction (저마찰을 위한 Micro-Scale Surface Texturing의 실험적 연구)

  • 채영훈
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.266-271
    • /
    • 2004
  • The aim of this paper is to investigate the effect of surface texturing on reduction friction and to understand the potential of friction reduction through micro-scale dimple to fabricate by photolithography on pin-on-disk test using flat-on-flat contact geometry. It was verify that the friction property with respect to the same pitch has been influence on the size of dimple under lubricated sliding contact. Also, we can recognize from Stribeck curve that the friction property has a connection with the size of dimple. It can explain a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. The friction property has been an effect on the size of surface texture on reduction friction, not only because the density of dimple, but also because the ratio of diameter/pitch. This ratio of approximately 0.5 recommend under the tested friction condition. It suggested that the ratio of d/p is an important parameter for surface texture design.

The effect of surface texturization on the thermal and electric characteristics of photovoltaic devices (표면 texturizaton에 따른 photovoltaic device의 열적 전기적 특성)

  • Jung, Ji-Chul;Jung, Byung-Eon;Lee, Jung-Ho;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.133-133
    • /
    • 2010
  • We studied the thermal and electric effect of 2D and 3D p-n photovoltaic diode structures with and without surface texturing. By analyzing the numerical simulation results of I-V characteristics and lattice temperature distributions, we systematically studied the effect of different texturing structures and different doping concentration on the characteristics of the silicon p-n photovoltaic devices. The, efficiency of the device with the surface texturing shows more than ~ 2% enhancement compared to the reference devices without texturing. The tendency of the efficiency of doping concentration has been studied with boron doping of $10^{14}{\sim}10^{17}cm^{-3}$ and phosphorus doping of $10^{15}cm^{-3}$. In addition to that, the study of changing phosphorus doping of $10^{15}{\sim}10^{18}cm^{-3}$ with boron doping of $10^{14}cm^{-3}$ has been examined. It has been shown that the texturing structure not only improves the light trapping but also plays an important role in the heat radiation.

  • PDF