• Title/Summary/Keyword: Surface state factor

Search Result 190, Processing Time 0.025 seconds

Comparative Study of LEM and SSR-FEM on Stability of Reinforced Soil Slope (보강토사면의 안정성에 대한 LEM과 SSR-FEM의 비교연구)

  • Kim, Young-Min;Kang, Seong-Gwi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.11-18
    • /
    • 2009
  • This paper presents a comparative study of reinforced soil slope by using LEM and SSR-FEM. Current analysis methods for reinforced soil wall are based on LEM. SSR-FEM assumes a reduction of soil strength by a factor to reach a critical state prior to failure based on continuum mechanics. In this study the comparisons are concerned with the factor of safety and the potential failure surface in reinforced soil wall. We investigated the stability of the reinforced soil wall with a slope of $60^{\circ}$ by LEM and SSR-FEM. The comparisons indicated good performance of the SSR-FEM on stability analysis of reinforce soil wall.

  • PDF

The Relationships Between Empirical Factors and Water Quality in Agricultural Reservoirs (농업용 저수지 수질과 경험적 인자들과의 관계)

  • Kim, Ho-Sub;Choi, Eun-Mi;Park, Ju-hyun;Hwang, Ha-Sun;Kim, Bomchul;Kong, Dong-Soo;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.333-339
    • /
    • 2008
  • This study was carried out to assay the relationships between empirical factors and water quality in 23 agricultural reservoirs. Based on the trophic state index (TSI) deviation analysis, phosphorus in type II and III was the primary limiting factor on algal growth. BOD, COD, TP and chl.a concentration in type III reservoirs showed higher concentration than those of other types, while SS and TN concentration was no noticeable difference among three types. Characteristics of type III reservoirs showed large reservoir surface and drainage area, large surface area to volume (SAV) ratio, small drainage area to reservoir area (DA/RA) ratio, relatively old age, large paddy field and upland field to drainage area ratio (Mean 17.4%) and high generation and discharge loads compared to other types of reservoirs. In type I and II reservoirs, trends of BOD, TN, TP concentration in water column, were similar to those of the discharge load of pollutants. Although type II reservoirs generally showed low phosphorus discharge loads compared to type I reservoirs, TP and chl.a concentration in water column was greater than that of type I. Characteristics of type II reservoirs showed relatively large SAV ratio and old age compared to type I reservoirs and was similar to those of type III including eutrophic reservoirs.

A methodological approach for slope stability analysis in Steady state infiltration (정상류 침투를 가정한 강우시 사면안정해석기법)

  • Song, Pyung-Hyun;You, Byung-Ok;Ahn, Kwang-Kuk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.736-744
    • /
    • 2009
  • The abrupt failure of slope caused by a concentrated rainfall would be a disaster in this country. Specially, the soil slope may be collapsed by the rainfall seepage, however, there is not much information for the mechanism of slope failure during rainfall. As analyzing the stability of slope by rainfall, the conventional method is to put the ground-water level on the surface of slope. However, it may provide the over-reinforcement for the slope stability. Futhermore, although over-reinforcement for the slope was fulfilled, the possibility of potential slope failure still exists. In this study, the slope stability by the conventional design method and the causes of unstable slope during rainfall were investigated. To analyze the slope stability by rainfall, the computer program SEEP/W for the analysis of seepage was used. As changing the intensity and duration of rainfall in SEEP/W, the analysis were performed. After completion of analysis, the porewater pressure data from SEEP/W was applied to SLOPE/W. As a results of this analysis, it is not reasonable that the groundwater level is going up to the surface of slope during rainfall. Therefore, the conventional reinforcement for the slope stability is not obvious to satisfy the criterion safety factor during rainfall. The reasonable counterplan is to install drainage hole on the surface of slope in order to prevent erosion and debris flow.

  • PDF

Investigation on effect of surface properties on droplet impact cooling of cladding surfaces

  • Wang, Zefeng;Qu, Wenhai;Xiong, Jinbiao;Zhong, Mingjun;Yang, Yanhua
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.508-519
    • /
    • 2020
  • During transients or accidents, the reactor core is uncovered, and droplets entrained above the quench front collides with the uncovered fuel rod surface. Droplet impact cooling can reduce the peak cladding temperature. Besides zirconium-based cladding, versatile accidental tolerant fuel (ATF) claddings, including FeCrAl, have been proposed to increase the accident coping time. In order to investigate the effect of surface properties on droplet impact cooling of cladding surfaces, the droplet impact phenomena are photographed on the FeCrAl and zircaloy-4 (Zr-4) surfaces under different conditions. On the oxidized FeCrAl surface, the Leidenfrost phenomenon is not observed even when the surface temperature is as high as 550 ℃ with We > 30. Comparison of the impact behaviors observed on different materials shows that nucleate and transition boiling is more intensive on surfaces with larger thermal conductivity. The Leidenfrost point temperature (LPT) decreases with the solid thermal effusivity (${\sqrt{k{\rho}C_p}}$). However, the CHF temperature is relatively insensitive to the surface oxidation and Weber number. Droplet spreading diameter is analyzed quantitatively in the film boiling stage. Based on the energy balance a correlation is proposed for droplet maximum spreading factor. A mechanistic model is also developed for the LPT based on homogeneous nucleation theory.

Stability Analysis of Concrete Plugs Using a 3-D Failure Criterion (3차원 파괴조건식을 이용한 콘크리트 플러그의 안전도 평가)

  • Lee, Youn-Kyou;Song, Won-Kyoung;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.526-535
    • /
    • 2011
  • A new failure criterion for concrete, which takes into account the effect of the intermediate principal stress, is proposed. The new criterion, which takes the advantages from both the Mohr-Coulomb and the Willam-Warnke criteria, is linear in the meridian section, while its octahedral section is always smooth and convex. Fitting the triaxial compression data with the proposed criterion shows the high performance of the new criterion. A new formula for the factor of safety of concrete is defined based on the new failure criterion and it is employed in the stability analysis of the concrete plugs installed in the pilot plant. The new formula for the factor of safety measures the degree of closeness of a stress state to the failure surface in the octahedral plane. Finally, 3-D finite element analyses of pilot plant were carried out to obtain the stress distributions in the plugs. Then, the stress distributions are converted to those of factor of safety by use of the proposed formula. Based on the distribution of factor of safety in the concrete plugs, the stability of the tapered and wedge-shaped plugs is evaluated.

Evaluation of Impact Factor in Suspension Bridges under A Series of Moving Vehicles (일련의 주행 차량에 의한 현수교의 충격계수 평가)

  • Park, Yong Myung;Kim, Dong Hyun;Kim, Hee Soon;Park, Jae Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.485-498
    • /
    • 2014
  • In this paper, vehicle-bridge interaction analysis under a series of moving vehicles to simulate a lane load was performed to estimate impact factor of the main cable, hanger and girder for the selected suspension bridges with 404m and 1545m main span. Korea Bridge Design Code(Limit State Design) was selected for the live model in which KL-510 truck was modeled 6-d.o.f. vehicle and a lane load was simulated by a series of single-axle vehicles. For the 404m main span bridge, hinge-type and floating-type girders at the tower were considered to examine the impact factor according to the connection and supporting type of the girders. The parameters considered herein are the types of live load-a truck only and a truck plus lane load, eccentricity of moving vehicles, road surface roughness and vehicle speed. The road surface roughness was randomly generated based on ISO 8608 and it was applied to the truck only. The impact factors were also evaluated by using the influence line method that is commonly used in cable-supported bridges and compared with those from vehicle-bridge interaction analysis.

A Tribological Study of SiC-Steel Couples (탄화규소-강 미끄럼에서의 마모특성)

  • 장복기;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.7-12
    • /
    • 1997
  • The wear behavior of SiC in SiC-steel sliding couple was investigated under various wear test conditions, such as solid state sliding - dry and wet air atmosphere - or lubricated sliding, sliding velocity and at-mosphere temperature. The effect of SiC fabrication process on the SiC wear rate was also studied under varying sliding velocities. Humidity of air plays a lubricating role in the solid state sliding, while the wear behavior is largely influenced by the sliding velocity, especially if the atmosphere is extremely dry. The fa-brication process of SiC and the surface roughness result in different wear rate depending on the magnitude of sliding velocity. High temperature is, among others, the most deteriorating factor of wear, thus being strongly wear-accelerating even under boundary lubrication.

  • PDF

Corrosion Inhibition Properties of Steel bars in Reinforced Concrete Using Superplasticizer with Air Entrained Agent (고성능AE감수제를 사용한 콘크리트의 철근부식 저항성)

  • Lee, Mun-Hwan;Jung, Mi-Kyung;Oh, Se-Chul;Bae, Kyu-Woong;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.149-160
    • /
    • 2000
  • As systematic methodologies are required for the evaluation on the durability of reinforced concrete structure, it is necessary to study and examine every factor which deteriorates the durability of structures. This paper aims to define factors affecting rebar corrosion and to establish a basis for a prediction of serviceability, regarding a state of harmful corrosion as a state when crack begins on the surface of concrete. The study results are followings; The corrosive current has changed by types of mixture, and this property enables the evaluations of corrosion resistance by mixture and concrete cover. The specimen using AE superplasticizer has better corrosion-resistance properties than non-AE specimen, as well those having low W/C and high unit cement weight. The procedure for calculation of durable year in this study is able to use as an indicator to establish mixture factors such as unit cement weight, W/C, amount of admixture, etc.

  • PDF

Determination of Knoop Indentation Stress Conversion Factors for Measuring Equibiaxial Residual Stress (인장 및 압축 등방 잔류응력 측정을 위한 누프 압입시험의 응력환산계수 결정)

  • Jeong, Min Jae;Kim, Young-Cheon
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.484-490
    • /
    • 2021
  • Instrumented indentation testing has been widely used for residual stress measurement. The Knoop indentation is mainly selected for determining anisotropic mechanical properties and non-equibiaxial residual stress. However, the measurement of equibiaxial stress state and compressive residual stress on a specimen surface using Knoop indentation is neither fully comprehended nor unavailable. In this study, we investigated stress conversion factors for measuring Knoop indentation on equibiaxial stress state through indentation depth using finite element analysis. Knoop indentation was conducted for specimens to determine tensile and compressive equibiaxial residual stress. Both were found to be increased proportionally according to indentation depth. The stress field beneath the indenter during each indentation test was also analyzed. Compressive residual stress suppressed the in-plane expansion of stress field during indentation. In contrast, stress fields beneath the indenter developed diagonally downward for tensile residual stress. Furthermore, differences between trends of stress fields at long and short axes of Knoop indenter were observed due to difference in indenting angles and the projected area of plastic zone that was exposed to residual stress.

Fatigue life evolution of steel wire considering corrosion-fatigue coupling effect: Analytical model and application

  • Yang Ding;Xiao-Wei Ye;Hong Zhang;Xue-Song Zhang
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.363-374
    • /
    • 2024
  • The fatigue life of steel wire is affected not only by fatigue load, but also by corrosion environment in service period. Specially, the corrosion pit will lead to stress concentration on the surface of steel wire inducing the formation of fatigue cracks, and the fatigue cracks will accelerate the corrosion process. Therefore, the corrosion fatigue of steel wire is a coupling effect. In this study, the corrosion-fatigue coupling life curve is derived with considering corrosion-fatigue pitting stage, corrosion-fatigue short crack stage and corrosion-fatigue long crack stage. In addition, the stress concentration factors of different corrosion pits are calculated by COMSOL software. Furthermore, the effect of corrosion environment factors, that is, corrosion rate, corrosion pit morphology, frequency and action factor of fatigue load, on fatigue life of steel wire is analyzed. And then, the corrosion-fatigue coupling life curve is compared with the fatigue life curve and fatigue life curve with pre-corrosion. The result showed that the anti-fatigue performance of the steel wire with considering corrosion-fatigue coupling is 68.08% and 41.79% lower than fatigue life curve and fatigue life curve with pre-corrosion. Therefore, the corrosion-fatigue coupling effect should be considered in the design of steel wire.