• Title/Summary/Keyword: Surface state factor

Search Result 191, Processing Time 0.023 seconds

Modeling the Threshold Voltage of SiC MOSFETs for High Temperature Applications (고온 응용을 위한 SiC MOSFET 문턱전압 모델)

  • 이원선;오충완;최재승;신동현;이형규;박근형;김영석
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.559-563
    • /
    • 2002
  • A threshold voltage model of SiC N-channel MOSFETs for high-temperature and hard radiation environments has been developed and verified by comparing with experimental results. The proposed model includes the difference in the work functions, the surface potential, depletion charges and SiC/$SiO_2$acceptor-like interface state charges as a function of temperature. Simulations of the model shoved that interface slates were the most dominant factor for the threshold voltage decrease as the temperature increase. To verify the model, SiC N-chnnel MOSFETS were fabricated and threshold voltages as a function of temperature were measured and compared wish model simulations. From these comparisons, extracted density of interface slates was $4{\times}10^{12}\textrm{cm}^{-2}eV^{-1}$.

Thermal Stresses in a Laminated Fiber-Reinforced Composite Containing an Interlaminar Crack Under a Uniform Heat Flow (층간균열이 존재하는 균일 열유동하의 섬유강화 적층복합재료의 열응력해석)

  • 최형집;오준성;이강용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.887-902
    • /
    • 1994
  • Within the framework of anisotropic thermoelasticity, the problem of an interlaminar crack in a laminated fiber-reinforced composite subjected to a uniform heat flow is investigated. Under a state of generalized plane deformation, dissimilar anisotropic half-spaces with different fiber orientations are considered to be bound together by a matrix interlayer containing the crack. The interlayer models the matrix-rich interlaminar region of the fibrous composite laminate. Based on the flexibility/stiffness matrix approach, formulation of the current crack problem results in having to solve two sets of singular integral equations for temperature and thermal stress analyses. Numerical results are obtained, illustrating the parametric effects of laminate stacking sequence, relative crack size, crack location, crack surface partial insulation, and fiber volume fraction on the values of mixed mode thermal stress intensity factors.

Influences of Mach Number and Flow Incidence on Aerodynamic Losses of Steam Turbine Blade

  • Yoo, Seok-Jae;Ng, Wing Fai Ng
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.456-465
    • /
    • 2000
  • An experiment was conducted to investigate the aerodynamic losses of high pressure steam turbine nozzle (526A) subjected to a large range of incident angles ($-34^{\circ}\;to\;26^{\circ}$) and exit Mach numbers (0.6 and 1.15). Measurements included downstream Pitot probe traverses, upstream total pressure, and end wall static pressures. Flow visualization techniques such as shadowgraph and color oil flow visualization were performed to complement the measured data. When the exit Mach number for nozzles increased from 0.9 to 1.1 the total pressure loss coefficient increased by a factor of 7 as compared to the total pressure losses measured at subsonic conditions ($M_2<0.9$). For the range of incidence tested, the effect of flow incidence on the total pressure losses is less pronounced. Based on the shadowgraphs taken during the experiment, it' s believed that the large increase in losses at transonic conditions is due to strong shock/ boundary layer interaction that may lead to flow separation on the blade suction surface.

  • PDF

Development of a Floating Buoy for Monitoring Ocean Environments (해양환경모니터링을 위한 표류부이 개발)

  • Yu, Yung-Ho;Gang, Yong-Soo;Lee, Won-Boo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.705-712
    • /
    • 2009
  • The state changes of ocean covered over 70% of earth surface are one of the greatest factor of weather catastrophe. Recently weather extraordinary events are followed by steep increase of sea water temperature and scientists in various fields are studying and warning the weather changes. In this paper, floating buoy is developed to monitor ocean environments via Orbcomm satellite and a method is proposed to increase measurement accuracy of sea water temperature with common low price temperature sensor. Experimental results are presented to illustrate the usability and effectiveness of the developed system. A web-based real time monitoring system is built to monitor ocean environmental information such as sea and air temperature, salinity according to the position of buoy through the internet for user convenience.

Diffusion Coefficient of Iron in ZnSe Polycrystals from Metal Phase for mid-IR Gain Medium Application

  • Jeong, Junwoo;Myoung, NoSoung
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.371-375
    • /
    • 2014
  • Diffusion coefficient of Fe in polycrystalline host ZnSe as a mid-IR gain medium has been measured in the annealing temperature ranges of 850 to $950^{\circ}C$. The synthesis of the samples was carried out in quartz ampoule in which the Fe thin film deposited by physical vapor evaporation method on the ZnSe. One can realize that the diffusion coefficient strongly depends on the surface active surfactants through the cleaning process and the substrate temperature during the thin film deposition leading to $2.04{\times}10^{-9}cm^2/s$ for $Fe^{2+}:ZnSe$. The Annealing temperature dependence of the Fe ions diffusion in ZnSe was used to evaluate the activation energy, $E_a$=1.39 eV for diffusion and the pre-exponential factor $D_0$ of $13.5cm^2/s$.

Appropriate nitrogen application enhances saponin synthesis and growth mediated by optimizing root nutrient uptake ability

  • Wei, Wei;Ye, Chen;Huang, Hui-Chuan;Yang, Min;Mei, Xin-Yue;Du, Fei;He, Xia-Hong;Zhu, Shu-Sheng;Liu, Yi-Xiang
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.627-636
    • /
    • 2020
  • Background: Cultivation of medicinal crops, which synthesize hundreds of substances for curative functions, was focused on the synthesis of secondary metabolites rather than biomass accumulation. Nutrition is an important restrict factor for plant growth and secondary metabolites, but little attention has been given to the plasticity of nutrient uptake and secondary metabolites synthesis response to soil nitrogen (N) change. Methods: Two year-field experiments of Sanqi (Panax notoginseng), which can synthesize a high level of saponin in cells, were conducted to study the effects of N application on the temporal dynamics of biomass, nutrient absorption, root architecture and the relationships between these parameters and saponin synthesis. Results: Increasing N fertilizer rates could improve the dry matter yields and nutrient absorption ability through increasing the maximum daily growth (or nutrient uptake) rate. Under suitable N level (225 kg/ha N), Sanqi restricted the root length and surface and enhanced the root diameter and N uptake rate per root length (NURI) to promote nutrient absorption, but the opposite status of Sanqi root architecture and NURI was found when soil N was deficient. Furthermore, increasing N rates could promote the accumulation of saponin in roots through improving the NURI, which showed a significant positive relationship with the content of saponin in the taproots. Conclusion: Appropriate N fertilizer rates could optimize both root architecture and nutrient uptake efficiency, then promote both the accumulation of dry matter and the synthesis of saponins.

Effects of Dilute Acid Pretreatment on Enzyme Adsorption and Surface Morphology of Liriodendron tulipifera

  • Min, Byeong-Cheol;Koo, Bon-Wook;Gwak, Ki-Seob;Yeo, Hwan-Myeong;Choi, Joon-Weon;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.187-195
    • /
    • 2011
  • In this study, dilute acid pretreatment of $Liriodendron$ $tulipifera$ was performed for enzymatic hydrolysis. As the pretreatment temperature was increased, enzymatic hydrolysis and enzyme adsorption yield also increased. The highest enzymatic hydrolysis yield was 57% (g/g) and enzyme adsorption was 44% (g/g). Enzymatic hydrolysis yield was determined with weight loss of pretreated biomass by enzyme, and enzyme adsorption was a percentage of enzyme weight attaching on pretreated biomass compared with input enzyme weight. When $L.$ $tulipifera$ was pretreated with 1% sulfuric acid at $160^{\circ}C$ for 5 min., hemicellulose was significantly removed in pretreatment, but the lignin contents were constant. Other changes in surface morphology were detected on biomass pretreated at $160^{\circ}C$ by a field emission scanning electron microscope (FESEM). A large number of spherical shapes known as lignin droplets were observed over the entire biomass surface after pretreatment. Hemicellulose removal and morphological changes improved enzyme accessibility to cellulose by increasing cellulose exposure to enzyme. It is thus evidence that enzyme adsorption is a significant factor to understand pretreatment effectiveness.

Interaction Factors and Response Surface Analysis on the Factors Influencing the Flow Front Temperature at Metal Injection Mold (금속사출 유동선단온도에 영향을 미치는 주요 인자들의 상호관계 및 반응표면분석)

  • Kim, Myoung-Ho;Yoon, Hi-Seak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.248-255
    • /
    • 2013
  • The objective of this study is to optimize the Metal Injection Molding(MIM) process with design of experiments(DOE) and numerical analysis. To derive the optimal process condition, experiment or numerical analysis was performed under various process conditions. To analyze the interaction among influential factors contributing to the temperature at flow front and response surface in MIM, both central point and axial point were added to the full factorial design with 2 levels and 5 factors and then their impacts on response variable in 43 experimental conditions were analyzed and the significance was evaluated. As a result, sprue, runner, and gate were completely filled in about 0.247 seconds after injection, the front part of the green body was filled in about 0.3344 seconds, the green body except gate, etc changed to almost solid state in about 3.29 seconds, the Packinging pressure was completed in about 6.29 seconds, and the green body inside and outside and sprue, etc became solid in 13.2 seconds. The impact of individual or reciprocal action of factors on the temperature at flow front was analyzed through regular probability, test statistics, main effect, and interaction effect. As a result, of a total of 31 combinations of factors, 9 unit factors and reciprocal actions were significant, and the screening was also possible. A proper regression equation was drawn with regression analysis and response surface design on the response variable of temperature at flow front, and the applicability could be verified.

증발억제법에 의한 수온 및 지온상승효과에 관한 연구

  • 김광식
    • Water for future
    • /
    • v.5 no.2
    • /
    • pp.6-16
    • /
    • 1972
  • It has been well studied and known that the yields from the rice fields irrigated by the cold water such as the water directly flowing in from mountain valleies, underground water and subground water are largely influenced by the water temperature. However, the best method of raising water temperature has not yet been established. This is because there are some essentially difficult problems associated. When we examine the effects of $1^{\circ}C$ rise in the water temperature under natural condition on rice growing, the necessity of this line of study is verified. The results of Mihara's study show that rice bears its fruits at the water temperature above $19^{\circ}C$ and the difference of $1^{\circ}C$ in the range of $19^{\circ}C$ to $22^{\circ}C$ can produce the 20% of difference in yields. Because of these facts, most farmers have made use of water temperature raising ponds, zigzag waterways and shelter belts. But the most important factor in raising water temperature has been found to be the heat loss due to evaporation. Recently, a good deal of experiment on raising water temperature and soil temperature by reducing the evaporation are being carried out all over the world. The reduction of evaporation does not only reduce heat loss, from the surface but also reduce the loss of water. Present study is aimed to determine the efficiency of different chemicals by which monomolecular films are formed over different surfaces such as water surface, soil surface and the surface of plant leaves with a purpose of preventing the transpiration, and aimed to observe the effects of the temperature rise and its influence on growing state as well as the durability of the plants under drought condition.

  • PDF

Back Surface Field Properties with Different Surface Conditions for Crystalline Silicon Solar Cells (후면 형상에 따른 결정질 실리콘 태양전지의 후면전계 형성 및 특성)

  • Kim, Hyun-Ho;Kim, Seong-Tak;Park, Sung-Eun;Song, Joo-Yong;Kim, Young-Do;Tark, Sung-Ju;Kwon, Soon-Woo;Yoon, Se-Wang;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.243-249
    • /
    • 2011
  • To reduce manufacturing costs of crystalline silicon solar cells, silicon wafers have become thinner. In relation to this, the properties of the aluminium-back surface field (Al-BSF) are considered an important factor in solar cell performance. Generally, screen-printing and a rapid thermal process (RTP) are utilized together to form the Al-BSF. This study evaluates Al-BSF formation on a (111) textured back surface compared with a (100) flat back surface with variation of ramp up rates from 18 to $89^{\circ}C$/s for the RTP annealing conditions. To make different back surface morphologies, one side texturing using a silicon nitride film and double side texturing were carried out. After aluminium screen-printing, Al-BSF formed according to the RTP annealing conditions. A metal etching process in hydrochloric acid solution was carried out to assess the quality of Al-BSF. Saturation currents were calculated by using quasi-steady-state photoconductance. The surface morphologies observed by scanning electron microscopy and a non-contacting optical profiler. Also, sheet resistances and bulk carrier concentration were measured by a 4-point probe and hall measurement system. From the results, a faster ramp up during Al-BSF formation yielded better quality than a slower ramp up process due to temperature uniformity of silicon and the aluminium surface. Also, in the Al-BSF formation process, the (111) textured back surface is significantly affected by the ramp up rates compared with the (100) flat back surface.