• Title/Summary/Keyword: Surface roughness

Search Result 5,172, Processing Time 0.039 seconds

Surface roughness changes in Al2O3 induced by Nd:YAG laser irradiation

  • Yeo, Sun-Mok;Lee, Seong-Jun;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.331-331
    • /
    • 2011
  • We investigated the surface roughness and surface morphology changes for the laser irradiated alumina plates by a Q-switched Nd:YAG laser. For the laser irradiation on the alumina plates with ${\lambda}$ = 1064 nm, the surface roughness decreases with the increasing energy density. The surface morphology shows that the edges of alumina grains become dull with the increasing energy density. For ${\lambda}$ = 532 nm, increasing scan time at the same energy density causes a rough surface. We discuss the physical reason of the surface roughness and surface morphology changes.

  • PDF

A Study on the Surface Polishing of Diamond Thin Films by Thermal Diffusion (열확산에 의한 다이아몬드 박막의 표면연마에 관한 연구)

  • Bae, Mun Ki;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.75-80
    • /
    • 2021
  • The crystal grains of polycrystalline diamond vary depending on deposition conditions and growth thickness. The diamond thin film deposited by the CVD method has a very rough growth surface. On average, the surface roughness of a diamond thin film deposited by CVD is in the range of 1-100 um. However, the high surface roughness of diamond is unsuitable for application in industrial applications, so the surface roughness must be lowered. As the surface roughness decreases, the scattering of incident light is reduced, the heat conduction is improved, the mechanical surface friction coefficient can be lowered, and the transmittance can also be improved. In addition, diamond-coated cutting tools have the advantage of enabling ultra-precise machining. In this study, the surface roughness of diamond was improved by thermal diffusion reaction between diamond carbon atoms and ferrous metals at high temperature for diamond thin films deposited by MPCVD.

An In-Process Measurement Technique for Non-contact Monitoring of Surface Roughness and form Accuracy of Ground Surfaces (연삭 가공면의 표면조도와 형상정밀도의 비접촉식 인프로세스 측정기술)

  • Yim, Dong-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.2
    • /
    • pp.36-46
    • /
    • 1987
  • An optical technique using laser for non-contact measurement of surface roughness and form accuracy of ground surfaces is presented. It is found that, when a ground surface is illuminated by a beam of laser light, the roughness height and slope distribution has significant influence on the pattern of reflection and it maintains an unique Gaussian distribution relationship with the surface roughness. The principle idea of the optical measurement system is therefore monitor the radiation, and then calibrate it in process against surface roughness by means of necessary digital data processing. On the other hand, measuring the form accuracy of a ground surface is accomplished by using a triangular method, which is based on observing the movement of an image of a spot of light projected onto the surface. The image is focused, through a series of lenses for magnification, on a photodetector array lf line configur- ation. Then the relative movement of image and consequently the form accuracy of the surface can be obtained through appropriate calibration procedures. Experimental test showed that the optical roughness measurement technique suggested in this work is very efficient for most industrial applications being capable of monitoring the roughness heights ranging 0.1 to 0.6 .$\mu$m CLA values. And form accuracy can be measured in process with a resolution of 10 .$\mu$m.

  • PDF

Effect of surface roughness onto the scattering in low loss mirrors (기판의 표면거칠기와 반사경 산란에 대한 연구)

  • 조현주;신명진;이재철
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.209-214
    • /
    • 2002
  • The effect of surface roughness on mirror scattering has been studied. Five kinds of substrates with different surface roughness were fabricated. On those substrates, a dielectric multi-layer coating with high reflectivity was deposited by ion beam sputtering and electron beam evaporation. A total integrated scattering measurement set-up was built for the evaluation of deposited samples. Most of the ion beam sputtered mirrors showed lower scattering than the electron beam evaporated one, which deposited on substrates similar in surface roughness. Over ~2 $\AA$ in surface roughness, scattering strongly depend on the micro-structure of the super-polished surface. The lowest scattering we have achieved is 2.06 ppm by ion beam sputtering from the substrate with surface roughness of 0.23 $\AA$.

Surface Roughness for the Machining of Inclined Planes of Aluminum (알루미늄 경사면 절삭의 표면거칠기)

  • Han, Jeong-Sik;Jung, Jong-Yun;Moon, Dug-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.2
    • /
    • pp.11-18
    • /
    • 2008
  • Surface roughness is an important factor to evaluate machined parts in precision machining. This is the major measure of surface quality. This research sets up experiments to select the factors which affect surface roughness in the machining of inclined planes of aluminum. The levels of the selected experimental factors are chosen to evaluate the relationship between the surface roughness of the machined parts and machining parameters. This is to find out the optimal machining condition in the inclined planes. The objective of this research is to improve the surface roughness of the machined products by using the ANOVA analysis. The factors for the experiments are cutting speed, feed rate, cutting depth, and cutting width. The experimental levels of the factors are two for the cutting depth and width. For the cutting speed and feed rate, their levels are three because they are more sensitive for the surface roughness than the other two. The inclined planes are machined by 5-axis machining equipment.

A Study on the Surface Roughness of Corroded Reinforcing Rebar (부식된 철근의 표면 거칠기에 관한 연구)

  • Roh, Young-Sook;Lee, Sun-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.78-83
    • /
    • 2010
  • This paper discusses the surface roughness of corroded reinforcement rebar in reinforced concrete structures focusing on the quantitative measurement technique for rebar corrosion. Reinforcement rebar was corroded using accelerated corrosion induced method and corrosion rates were 0%, 1%, 2%, 3%, 5%, and 10% of mass losses. Using 3-dimensional scanner each surface profile of reinforcement rebar was established, and surface roughness was measured. Through tests and analyses of corroded reinforcement rebar, the following topics were particularly discussed: measurement of surface roughness, relationship between area and surface roughness, relationship between surface roughness and bond performance. As a result, surface roughness of corroded rebar was found to be very effective to bond strength until 2% of corrosion rate. It was also discussed how to relate surface roughness of corroded rebar to bond strength of reinforced concrete structures.

Effect of roughness on interface shear behavior of sand with steel and concrete surface

  • Samanta, Manojit;Punetha, Piyush;Sharma, Mahesh
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.387-398
    • /
    • 2018
  • The present study evaluates the interface shear strength between sand and different construction materials, namely steel and concrete, using direct shear test apparatus. The influence of surface roughness, mean size of sand particles, relative density of sand and size of the direct shear box on the interface shear behavior of sand with steel and concrete has been investigated. Test results show that the surface roughness of the construction materials significantly influences the interface shear strength. The peak and residual interface friction angles increase rapidly up to a particular value of surface roughness (critical surface roughness), beyond which the effect becomes negligible. At critical surface roughness, the peak and residual friction angles of the interfaces are 85-92% of the peak and residual internal friction angles of the sand. The particle size of sand (for morphologically identical sands) significantly influences the value of critical surface roughness. For the different roughness considered in the present study, both the peak and residual interaction coefficients lie in the range of 0.3-1. Moreover, the peak and residual interaction coefficients for all the interfaces considered are nearly identical, irrespective of the size of the direct shear box. The constitutive modeling of different interfaces followed the experimental investigation and it successfully predicted the pre-peak, peak and post peak interface shear response with reasonable accuracy. Moreover, the predicted stress-displacement relationship of different interfaces is in good agreement with the experimental results. The findings of the present study may also be applicable to other non-yielding interfaces having a similar range of roughness and sand properties.

Roughness and micro pit defects on surface of SUS 430 stainless steel strip in cold rolling process

  • Li, Changsheng;Zhu, Tao;Fu, Bo;Li, Youyuan
    • Advances in materials Research
    • /
    • v.4 no.4
    • /
    • pp.215-226
    • /
    • 2015
  • Experiment on roughness and micro pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The relation between roughness and glossiness with reduction in height, roll surface roughness, emulsion parameters was analyzed. The surface morphology of micro pit defects was observed by SEM, and the effects of micro pit defects on rolling reduction, roll surface roughness, emulsion parameters, lubrication oil in deformation zone and work roll diameter were discussed. With the increasing of reduction ratio strip surface roughness Ra(s), Rp(s) and Rv(s) were decreasing along rolling and width direction, the drop value in rolling direction was faster than that in width direction. The roughness and glossiness were obtained under emulsion concentration 3% and 6%, temperature $55^{\circ}C$ and $63^{\circ}C$, roll surface roughness $Ra(r)=0.5{\mu}m$, $Ra(r)=0.7{\mu}m$ and $Ra(r)=1.0{\mu}m$. The glossiness was declined rapidly when the micro defects ratio was above 23%. With the pass number increasing, the micro pit defects were reduced, uneven peak was decreased and gently along rolling direction. The micro pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. When work roll diameter was small, bite angle was increasing, lubrication oil in micro pit of deformation zone was decreased, micro defects were decreased, and glossiness value on the surface of strip was increased.

On the Metallic Surface Roughness Measurement by Laser Beam (LASER BEAM을 이용한 금속표면의 조도측정에 관한 연구)

  • 김희남;전영식;구만서
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.2
    • /
    • pp.50-57
    • /
    • 1990
  • A new technique for the measurement of surface roughness based on the intensity fluctuations of laser light backscattered from a moving surface has been introduced. This paper reports a method of measuring surface roughness using coherent optics and interferometry. Included are both the theory of the technique and experimental verification. The range of surface roughness which can be accurately measured by this method is also reported.

  • PDF

Studies on the Evolution of the Surface Roughness with Development of Surface Compound Layer in Salt Bath Nitrocarburising (Tufftride) (침질침탄시 화합물층의 성장에 따른 표면조도 변화에 관한 연구)

  • Song, K.S.;Moon, K.I.;Kim, S.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.5
    • /
    • pp.253-259
    • /
    • 2003
  • In this study, to find out the reason of deterioration in surface roughness of steel and cast iron after Tufftride, it has been investigated on the relation between the surface roughness and various factors such as the evolution of compound layer, surface morphology, and surface hardness, and change of pore ratio in the compound layer during Tufftride at $580^{\circ}C$. It is found that the surface roughness was increased with the evolution of compound layer during Tufftride of steel and cast iron. The change of surface roughness after Tufftride was reduced with decreasing tho content of carbon and cementite ($Fe_3C$) in the materials. in the cast irons, the various shaped graphites that was exposed to the surface should induce the discontinuous growth of the compound layer, and this resulted in the incoherent interfaces between matrix and compound layer and the deterioration of surface roughness. In the steels, the existence of cementites in the matrix resulted in the incoherent interfaces between matrix and compound layer. It is considered that during Tufftride the surface roughness must be mainly influenced by the formation of the incoherent interface between compound layer and matrix that is affected by some factors such as the microstructure, the composition, and the hardness of the matrix.