• Title/Summary/Keyword: Surface response analysis

Search Result 1,763, Processing Time 0.032 seconds

Prediction of the long-term deformation of high rockfill geostructures using a hybrid back-analysis method

  • Ming Xu;Dehai Jin
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.83-97
    • /
    • 2024
  • It is important to make reasonable prediction about the long-term deformation of high rockfill geostructures. However, the deformation is usually underestimated using the rockfill parameters obtained from laboratory tests due to different size effects, which make it necessary to identify parameters from in-situ monitoring data. This paper proposes a novel hybrid back-analysis method with a modified objective function defined for the time-dependent back-analysis problem. The method consists of two stages. In the first stage, an improved weighted average method is proposed to quickly narrow the search region; while in the second stage, an adaptive response surface method is proposed to iteratively search for the satisfactory solution, with a technique that can adaptively consider the translation, contraction or expansion of the exploration region. The accuracy and computational efficiency of the proposed hybrid back-analysis method is demonstrated by back-analyzing the long-term deformation of two high embankments constructed for airport runways, with the rockfills being modeled by a rheological model considering the influence of stress states on the creep behavior.

Loading Path Optimization in Aluminum Tube Hydroforming using Response Surface Method (반응표면법을 이용한 알루미늄 튜브 하이드로포밍의 하중경로 최적화)

  • Lim, H.T.;Kim, H.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.314-317
    • /
    • 2007
  • Automotive rear subframe of aluminum tube was developed by using hydroforming process, based on the numerical analysis and physical tryouts. In the previous study, the effect of prebending was evaluated on the basis of forming limit diagram which had been obtained from free bulging, T-shape forming and cross-shape forming, using the developed tube hydroformability testing system. In order to get the sound products, appropriate internal pressure is to be imposed corresponding to the axial feeding. In this study, the loading path, the combination of internal pressure and axial feeding during the process, was optimized to ensure minimum thickness variation and dimensional accuracy, by using response surface method.

  • PDF

Optimal Shape of a Parallel-Flow Heat Exchanger by Using a Response Surface Method (반응표면법을 이용한 평행류 열교환기의 형상 최적화)

  • Oh, Seok-Jin;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.296-303
    • /
    • 2004
  • The heat and flow characteristics in a single-phase parallel-flow heat exchanger was examined numerically to obtain its optimal shape. A response surface method was introduced to approximately predict its performance with respect to the design parameters over the design domain. The inflow/outflow angle of the working fluid, the location of inlet/outlet, the protruding height of flat tube and the height of header were chosen as a design parameter The evaluation of the relative importance of the design parameters was performed based on a sensitivity analysis. An efficiency index was used as an evaluation characteristics value to simultaneously consider both the heat transfer and the pressure drop. The efficiency index of the optimum model, compared to that of the base model, was increased by 9.3%.

Design of the Bead Force and Die Shape in Sheet Metal Forming Processes Using a Rigid-plastic Finite Element Method and Response Surface Methodology (강소성 유한요소법과 반응표면분석법을 이용한 박판성헝 공정에서의 비드력 및 다이형상의 설계)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.284-292
    • /
    • 2000
  • Optimization of the process parameters is carried out for process design in sheet metal forming processes. The scheme incorporates with a rigid-plastic finite element method for the deformation analysis and response surface methodology for the optimum searching of process parameters. The algorithm developed is applied to design of the draw bead force and the die radius in deep drawing processes of rectangular cups. The present algorithm shows the capability of designing process parameters which enable the prevention of the weak part of fracture during processes.

  • PDF

Application of Response Surface Methodology for optimize the Biostimulant ball and stabilize Heavy metals pollutants in contaminated coastal sediments

  • Song, Young-chae;Subha, Bakthacachallam;Woo, Jung Hui
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.179-180
    • /
    • 2015
  • The variety of organic and inorganic pollutants are introduced to coastal sediment and making highly contaminated due to rapid development of industralization and economic development. Numerous contaminants are release into marine sediment and it significantly affect marine aquatic environment. In the present study stated the optimize the biostimulant ball (BSB) in coastal sedimentand stabilse the heavy metals present in the sediment. The effective variables like BSB size, distance and month variables on Cu stabilization was determined by using Response surface methodology(RSM). The analysis of variance (ANOVA) and coefficient determination (R2) of Cu reduction 0.9610 and maximum stabilisation was obtained in 3cm ball size and 5.5cm distance and 4 month interval time. This result revealed that the BSB in effective for Cu reduction in coastal sediment.

  • PDF

A study of cut-off tool life equation by response surface methodology (應答表面法에 의한 切斷바이트의 工具壽命式에 關한 硏究)

  • 김원익;이충경;송지복;최만성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.54-60
    • /
    • 1988
  • This paper presents a study of tool-life equation on cut-off test by the statistical approach, referred to as response surface methodology instead of a conventional one-variable at a time method. It is the merit of response surface methodology that the test time is reduced to minimize the size and accurate analysis can be done. The reliability of such an equation can also be estimated. Two independent variables, cutting speed and feed rate, were investigated. A first order modeling equation is presented in this project. The results of this study are as follows that tool-life in cut-off operation is affected by cutting speed more than feed, and first order tool-life predicting equations are in good agreement with experimental results.

  • PDF

SLOPE ROTATABILITY OF ICOSAHEDRON AND DODECAHEDRON DESIGNS

  • Kim Hyuk-Joo;Park Sung-Hyun
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.1
    • /
    • pp.25-36
    • /
    • 2006
  • Icosahedron and dodecahedron designs are experimental designs which can be used for response surface analysis for the case when three independent variables are involved. When we are interested in estimating the slope of a response surface, slope rot at ability is a desirable property. In this paper, we derive conditions for icosahedron and dodecahedron designs to have slope rotatability, and actually obtain some slope-rotatable icosahedron and dodecahedron designs. We also apply Park and Kim (1992)'s measure of slope rotatability to icosahedron and dodecahedron designs, and observe resultant facts.

Permanent Magnet Optimization for Reduction of Cogging Torque of BLDC Motor using Response Surface Methodology (반응표면법을 이용한 코깅 토크 저감을 위한 BLDC 모터의 자석 최적설계)

  • Lee, Jang-Won;Shim, Ho-Kyung;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.202-205
    • /
    • 2008
  • This paper presents an optimization of permanent magnet (PM) in a brushless dc (BLDC) motor using the response surface methodology (RSM). Size and angle of the PM are optimized to minimize the cogging torque, while reducing the magnitude of harmonic at a dominant frequency and maintaining the operating torque. A fitted RS model is constructed by verifying the high reliability of the total variation and the variation of estimated error. The optimized design is validated by carrying out the reanalysis and comparing to the initial model using the nonlinear transient finite element analysis.

  • PDF

A Study on Solid Particle Erosion Wear Characteristics of High Cr White Iron Hardfacing by Response Surface Method (반응표면분석에 의한 고 Cr 철계 오버레이 용접부의 분체침식마모 특성의 연구)

  • 이형근
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.551-556
    • /
    • 2002
  • Solid particle erosion wear characteristics of high Cr white iron hardfacing were investigated using the erosion wear test method according with the ASTM G76-95. Wear experiments, where the blast angle, blast distance and blast pressure were selected as test variables, were planned and analyzed by response surface method (RSM to evaluate the wear loss statistically and quantitatively. The measured wear losses well coincided with the calculated ones by the experimental equation. The wear loss of high Cr cast iron hardfacing was increased with blasting pressure, but affected in a complicated way by the blasting angle and distance. Erosion wear of high Cr cast iron hardfacing could be well predicted by RSM analysis of wear variables.

Optimum Design on Reduction of Torque Ripple for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology (반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 최적설계)

  • Park Seong-June;Lee Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.69-75
    • /
    • 2006
  • This paper deals with the optimum design solution on reduction of torque ripple for a Synchronous Reluctance Motor with concentrated winding using response surface methodology. The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate the nonlinear solution. Comparisons are given with characteristics of a SynRM according to the stator winding, slot number, open width of slot, slot depth, teeth width variation in concentrated winding SynRM, respectively. This paper presents an optimization procedure using Response Surface Methodology (RSM) to determine design parameters for reducing torque ripple. RSM has been achieved to use the experimental design method in combination with finite Element Method (FEM) and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. Moreover, Sequential Quadratic Problem (SQP) method is used to solve the resulting of constrained nonlinear optimization problem.