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SLOPE ROTATABILITY OF ICOSAHEDRON AND
DODECAHEDRON DESIGNS

Hyuk Joo Kim! AND SUNG HYUN PARK?

ABSTRACT

Icosahedron and dodecahedron designs are experimental designs which
can be used for response surface analysis for the case when three independent
variables are involved. When we are interested in estimating the slope of a
response surface, slope rotatability is a desirable property. In this paper, we
derive conditions for icosahedron and dodecahedron designs to have slope
rotatability, and actually obtain some slope-rotatable icosahedron and do-
decahedron designs. We also apply Park and Kim (1992)’s measure of slope
rotatability to icosahedron and dodecahedron designs, and observe resultant
facts.

AMS 2000 subject classifications. Primary 62K20; Secondary 05B30.
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1. INTRODUCTION

Icosahedron and dodecahedron designs are response surface designs which can
be used for the case when three independent variables are under consideration.
One of the advantages of these types of design is that they conveniently afford
rotatable designs and orthogonal designs. They also provide uniform precision
designs and designs which are both rotatable and orthogonal or near-orthogonal
if the numbers of center points are suitably determined.
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When we are interested in estimating the slope of a response surface, slope ro-
tatability is a desirable property. There are two types of slope rotatability: slope
rotatability over axial directions (Hader and Park, 1978) and slope rotatability
over all directions (Park, 1987). It was found that every icosahedron design and
every dodecahedron design have slope rotatability over all directions. So, from
now on, slope rotatability means slope rotatability over axial directions.

This problem, estimation of slopes, occurs frequently in practical situations.
For instance, there are cases in which one wants to estimate rates of reaction in
chemical experiments, rates of change in the yield of a crop to various fertilizers,
rates of disintegration of radioactive material in an animal, and so forth (see
Park, 1987).

In this paper, we will derive conditions for icosahedron and dodecahedron
designs to be slope-rotatable designs, and actually obtain some slope-rotatable
icosahedron and dodecahedron designs. We will also apply the measure of slope
rotatability proposed by Park and Kim (1992) to icosahedron and dodecahedron
designs, and observe some resultant facts.

2. A MEASURE OF SLOPE ROTATABILITY

We consider the second order polynomial regression model

k k k
Yu=PBo+ > BT+ Y Buth + Y ByTuju+euw, u=12,..,N,

i=1 i=1 i<j

where z;,, denotes the level of the it* factor in the u** run of the experiment and
v is the observed value of the response variable in the u* run. 8y, 8;, Bi; and Bi;
are unknown regression coefficients and ¢,,’s are uncorrelated random errors with
mean zero and variance o2. The fitted equation by the least squares method can

k k k
g =0bo+ Z bix; + Z bnl'? + Z bijzix,
=1 =1

1<j

be written as

where bo, b;, b; and b;; are the least squares estimates of 3o, 5;, B;; and §;; respec-
tively.
Let us consider a particular class of response surface designs that satisfy the
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following conditions:

Cov(bs, bi;) = Cov(b;, bij) = Cov(bi, bij) = Covibi, by) =0, i#j#1#4,
Var(b;) are equal for all 1, '

Var(b;;) are equal for all ¢ and

Var(b;;) are equal for all (¢, ) where ¢ # j. (2.1)

Icosahedron and dodecahedron designs belong to this class.

Park and Kim (1992) proposed a measure of slope rotatability for second
order response surface designs. The measure generally has a very complicated
form, but for the class of designs satisfying (2.1) it has a much simpler form as
follows:

Qi(D) = —01—4{4Va,r(“)(b11) — Var(® (by)}?

= [Z—T{ZLVar(b)(bu) - Var(b)(blz)}z, (2.2)

where (@ and ® represent ‘after scaling’ and ‘before scaling’ respectively, and
N
[i) = 3 22, /N (before scaling). Here scaling means letting the designs have the

u=1
following first and pure second design moments so that fair comparisons can be

made (see Myers, 1976, p. 135; Khuri and Cornell, 1996, p. 108)
I i
[i{] = N;xw =0 and
N A
[it] = ]——v;xm =1

The design D is slope-rotatable if and only if the value of Qx(D) is zero, and D
becomes further from a slope-rotatable design as Qx(D) becomes larger.

3. ICOSAHEDRON DESIGN

This type of design is for the case of three independent variables. It consists of
twelve vertices of the icosahedron, plus ng > 1 center points. The design matrix
D is given by
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T T2 3

0 —a1 az
0 ar —ag
0 al as
—ag 0 —a1
as 0 -
—ag 0 ay
ag 0 al
—ai —as 0
—-aq Qg 0
a; —a2 0
aq a9 0
0 0 0

0 0 0.

Here a; and as are positive numbers such that a; > ag9. Note that if a1 = as,
then the icosahedron design is the same as the Box-Behnken design (Box and
Behnken, 1960). The moments of this configuration are given by

1] = for all
[i1] 57 or all ¢,

N 4 4, .4
Tin 4((11 + a’2) £

= 2 11

[d241] 2N 2 or all 1,

N 2.2 2 92

x4 14 4

[i1j5] = ; ";VJ“ = 12a41-ar2LO for any (¢, j) where @ # j,

and all odd moments = 0. a;/az = (v/5+ 1)/2 = 1.6180 gives an icosahedron
design which is rotatable in the Box-Hunter (1957) sense.
The variances of the quadratic coefficients are found to be

Var® (b12) = and

Var(b)

da % 5
{ (4+n (a1+a2) —(12+no)a%a_%} 9
N2 22 g
— aja3 + a3)(a} + a3)
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Therefore, we have by (2.2)

03(D) = (A D" [(ng)t + (o = 92+ (44 mg) 117
BT 112+ o no(tt — 2 + 1)(t2 + 1)2 a2 f
where t = aj/a3. Q3(D) depends on a; and ay only through a;/ag. Setting

Q3(D) = 0 leads to a fourth degree polynomial equation in #2:

’I’L()l‘,8 — (16 + 3n0)t6 + (16 — 4n0)t4 — (16 + 3n0)t2 +ng = 0.

The solution of this equation gives the value of ¢ which makes the icosahedron
design slope-rotatable. These values of ¢ for various ny are given in Table 3.1.
From Table 3.1, we note that the value of ¢ that makes the icosahedron design
slope-rotatable decreases as ng increases.

TABLE 3.1 Values of t = a1 /a2 for slope-rotatable icosahedron designs

no t no t
1 4.2900 6 2.4573
2 3.2744 7 2.3957
3 2.8796 8 2.3496
4 2.6711 9 2.3137
5 2.5433 10 2.2850

For example, when ng = 1, an icosahedron design with ¢t = 4.29 is a slope-
rotatable design. Such a design is obtained if we use (a1, a2) = (4.29,1), (8.58,2)
or (12.87, 3), etc. Suppose we use a; = 4.29 and ap = 1. Then the levels used
for each independent variable are —4.29, —1, 0, 1 and 4.29. Let us illustrate this
in terms of natural variables. Suppose one of the factors is temperature. If the
central level of temperature is 250°C and the difference between the levels repre-
sented by 0 and 1 (in coded variables) is 20°C, then the five levels of temperature
(in °C) will be 164.2, 230, 250, 270 and 335.8.

On the other hand, Table A.1 in Appendix gives the values of Q3(D) for the
icosahedron designs for various values of £ and ng. It is observed from Table A.1
that for a given ng, as ¢ increases (¢t > 1.0), the value of Q3(D) decreases to zero
and increases thereafter. The results in Table A.1 are displayed in Figure 3.1.

4. DODECAHEDRON DESIGN

This type of design is also for the case of three independent variables. It
consists of twenty vertices of the dodecahedron, plus ng > 1 center points, where
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Qs3(D)

FIGURE 3.1 Plot of Q3(D) against t = a1 /a2 for icosahedron designs

¢ > 1. The design matrix D is given by

Il D) I3

0 —c! —c

0 —c¢1 c

0 ¢t —c

0 ¢! c

—C 0 —c!

c 0 —ct

—c 0 ¢!

c 0 -1
—c1 —c 0
—c1 c 0
¢ —c 0
-1 c 0
-1 -1 -1
-1 -1 1
-1 1 -1
-1 1 1

1 -1 -1

(continued)
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r1 T2 I3

1 -1 1
1 1 -1
1 1 1
0 0
0 0 0.
The moments of this configuration are
. 4c+ch)? .
=—— " f
[#4] 207 g or all 1,
2, =232
[#7dt] = é(;—o_g_%ol for all 4 and
[ig4] = for any (4, j) where i # j,

204—710

and all odd moments = 0. ¢ = (v/5+1)/2 = 1.6180 gives a dodecahedron design
which is rotatable in the Box-Hunter (1957) sense.
The variances of the quadratic coefficients are found to be

Var® (b12) = 1—1202,

Var® (byy) = (20 + ng)c*(c® + 5c* + 1) — 8cH(c? + 1)* 2
Wi A+ D{(20+no) (B +8cA+ 1) —12(Z+ )4}
Hence by (2.2) it is obtained that
_ Lt
@a(D) = (20 + ng)4
(20 + ng)c?(c® + 5c* 4 1) — 8c*(c? + 1)* 1 2
(c®—ct+1){(20 + no)(c® +8c* +1) — 12(c2 + 1)4} 12

Setting Q3(D) = 0 leads to an eighth degree polynomial equation in c?:

(8 + np)c® — 48¢M — (64 + 5ng)ct? + 384¢!0 — (696 + 66m9)c®
+384c5 — (64 + 5ng)c? — 48¢% + (8 +ng) = 0.

The solution of this equation gives the value of ¢ which makes the dodecahedron
design slope-rotatable. Table 4.1 shows these values of ¢ for various ng. It is noted
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from Table 4.1 that the value of ¢ that makes the dodecahedron design slope-
rotatable decreases as ng increases. For example, when ng = 1, a dodecahedron
design with ¢ = 2.4050 is a slope-rotatable design. For this design, the levels
used for each independent variable are —2.4050, —1, —0.4158, 0, 0.4158, 1 and
2.4050. Suppose again that one of the factors is temperature. If the central level
of temperature is 250°C and the difference between the levels represented by 0
and 1 (in coded variables) is 20°C, then the seven levels of temperature (in °C)
will be 201.90, 230, 241.68, 250, 258.32, 270 and 298.10.

The values of Q3(D) for the dodecahedron designs are given in Table A.2
in Appendix for various values of ¢ and ng. From Table A.2, we observe that
when ng >'2, as ¢ increases (¢ > 1.0), the value of Q3(D) decreases to zero and
increases thereafter, but when ng = 1, @3(D) has a local minimum and a local
maximum before it becomes zero (Q3(D) = 0.2017 and 0.2098 when ¢ = 1.4 and
1.5, respectively), and decreases to zero and increases thereafter. The results in
Table A.2 are displayed in Figure 4.1.

TABLE 4.1 Values of ¢ for slope-rotatable dodecahedron designs

no c ng c

1 2.4050 6 2.0948 -
2 2.3103 7 2.0648

3 2.2362 8 2.0403

4 2.1779 9 2.0199

5 2.1317 10 2.0028

5. CONCLUDING REMARKS

One of the advantages of icosahedron and dodecahedron designs is that they
require relatively small number of experimental runs as compared with designs
of other types. Table 5.1 shows the numbers of experimental runs required for 33
factorial, central composite, icosahedron and dodecahedron designs. As we see
in this table, in particular, the number of experimental runs for the icosahedron
design is less than that for the central composite design if the number of center
points is the same. Another advantage of icosahedron and dodecahedron designs
is that they enable us to conveniently obtain designs having various desirable
properties by handling the values of the design parameters (ai/as for the icosa-
hedron design and ¢ for the dodecahedron design). This is just like that we can



SLOPE ROTATABILITY OF ICOSAHEDRON 33

Q;(D)

FIGURE 4.1 Plot of Q3(D) against ¢ for dodecahedron designs.

TABLE 5.1 Numbers of experimental runs for some kinds of design

no 1 2 3 4 5

3% factorial 27 [ 28 29|30 31
central composite | 15 | 16 | 17 | 18 | 19
icosahedron 13|14 | 15| 16 | 17
dodecahedron 21 122123 ]24) 25

obtain central composite designs with desirable properties by handling the value
of «, which is the number determining the positions of the axial points.

When we are interested in the estimation of the slope of a response surface,
slope rotatability is an important property. In this paper, we studied slope ro-
tatability of icosahedron and dodecahedron designs. Specifically, we derived con-
ditions that icosahedron and dodecahedron designs be slope-rotatable designs,
and we actually obtained slope-rotatable icosahedron and dodecahedron designs
for which the numbers of center points are from one to ten. We also computed
the values of the measure of slope rotatability proposed by Park and Kim (1992)
for various icosahedron and dodecahedron designs. In addition, for visual com-
prehension, we displayed plottings of the slope rotatability measure for various
icosahedron and dodecahedron designs.
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APPENDIX

TABLE A.1 Values of Q3(D) for icosahedron designs

o

1 2 3 4 5 6 7
1.0 0.3227 | 0.1066 | 0.0562 | 0.0352 } 0.0240 | 0.0173 | 0.0130
1.1 0.3142 | 0.1024 | 0.0535 | 0.0333 | 0.0227 | 0.0163 | 0.0122
1.2 0.2942 | 0.0927 | 0.0474 | 0.0291 | 0.0196 | 0.0140 | 0.0104
1.3 0.2702 | 0.0812 | 0.0403 | 0.0242 | 0.0161 | 0.0113 | 0.0083
14 0.2464 | 0.0701 | 0.0336 | 0.0197 | 0.0128 | 0.0089 | 0.0065
1.5 0.2247 | 0.0602 | 0.0277 | 0.0157 | 0.0100 | 0.0068 | 0.0049
1.6 0.2055 | 0.0518 | 0.0228 | 0.0125 | 0.0077 | 0.0052 | 0.0036
1.7 0.1885 | 0.0445 | 0.0186 | 0.0098 | 0.0059 | 0.0038 { 0.0026
1.8 0.1733 | 0.0383 | 0.0152 | 0.0076 | 0.0044 | 0.0028 | 0.0018
1.9 0.1597 | 0.0329 | 0.0122 | 0.0058 | 0.0032 | 0.0019 | 0.0012
2.0 0.1472 | 0.0281 | 0.0097 | 0.0043 | 0.0022 | 0.0013 | 0.0008
2.1 0.1357 | 0.0238 | 0.0076 | 0.0031 | 0.0015 | 0.0008 | 0.0004
2.2 0.1249 | 0.0200 | 0.0057 | 0.0021 | 0.0009 j 0.0004 | 0.0002
2.3 0.1147 | 0.0166 | 0.0042 | 0.0013 | 0.0004 | 0.0001 | 0.0000
24 0.1050 | 0.0135 | 0.0029 | 0.0007 | 0.0002 | 0.0000 | 0.0000
2.5 0.0957 | 0.0107 | 0.0018 | 0.0003 | 0.0000 | 0.0000 | 0.0001
2.6 0.0868 | 0.0082 | 0.0010 | 0.0000 | 0.0000 | 0.0001 { 0.0002
2.7 0.0782 | 0.0061 | 0.0004 | 0.0000 | 0.0002 | 0.0004 | 0.0004
2.8 0.0700 | 0.0042 | 0.0001 | 0.0002 | 0.0005 | 0.0007 | 0.0008
2.9 0.0622 | 0.0027 | 0.0000 | 0.0005 | 0.0010 | 0.0012 | 0.0012
3.0 0.0546 | 0.0015 | 0.0002 | 0.0011 j 0.0016 | 0.0018 | 0.0018
3.1 0.0475 | 0.0006 | 0.0007 | 0.0019 | 0.0025 | 0.0026 | 0.0025
3.2 0.0407 | 0.0001 | 0.0015 | 0.0030 | 0.0035 | 0.0035 | 0.0033
3.3 0.0343 | 0.0000 | 0.0026 | 0.0043 | 0.0048 | 0.0046 | 0.0043
3.4 0.0283 | 0.0003 [ 0.0040 | 0.0059 | 0.0062 | 0.0059 | 0.0054
3.5 0.0228 | 0.0011 | 0.0058 | 0.0077 | 0.0079 | 0.0074 | 0.0066
3.6 0.0177 | 0.0023 | 0.0080 | 0.0099 | 0.0099 | 0.0091 | 0.0080
3.7 0.0133 | 0.0041 | 0.0106 | 0.0124 | 0.0121 | 0.0109 | 0.0096
3.8 ©0.0093 | 0.0064 | 0.0137 | 0.0153 | 0.0146 | 0.0130 | 0.0114
3.9 0.0060 | 0.0093 | 0.0172 | 0.0185 | 0.0174 | 0.0154 | 0.0134
4.0 0.0034 | 0.0127 | 0.0212 | 0.0222 | 0.0205 | 0.0180 | 0.0155
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TABLE A.2 Values of Q3(D) for dodecahedron designs

o

1.0 0.3185 | 0.1999 { 0.1443 | 0.1111 | 0.0887 | 0.0725 | 0.0602
1.1 0.2806 | 0.1686 | 0.1191 | 0.0904 | 0.0715 | 0.0580 | 0.0480
1.2 0.2269 { 0.1211 | 0.0805 [ 0.0589 | 0.0454 | 0.0362 | 0.0295
1.3 0.2018 | 0.0901 | 0.0547 | 0.0379 | 0.0281 | 0.0218 | 0.0174
14 0.2017 | 0.0729 | 0.0399 | 0.0258 | 0.0183 | 0.0137 | 0.0106
1.5 0.2098 | 0.0621 | 0.0306 | 0.0185 | 0.0124 | 0.0089 | 0.0067
1.6 0.2047 { 0.0525 | 0.0236 [ 0.0133 | 0.0085 | 0.0058 | 0.0042
1.7 0.1742 | 0.0418 | 0.0175 | 0.0093 | 0.0056 | 0.0037 | 0.0025
1.8 0.1274 | 0.0304 | 0.0121 | 0.0060 | 0.0034 | 0.0021 | 0.0013
1.9 0.0816 | 0.0198 | 0.0074 | 0.0033 | 0.0017 | 0.0009 | 0.0005
2.0 0.0466 | 0.0112 | 0.0037 { 0.0014 [ 0.0006 | 0.0002 | 0.0001
2.1 0.0234 | 0.0050 | 0.0012 [ 0.0003 | 0.0000 | 0.0000 | 0.0000
2.2 0.0095 | 0.0013 | 0.0001 | 0.0000 | 0.0002 | 0.0003 | 0.0004
2.3 0.0023 | 0.0000 | 0.0003 | 0.0007 | 0.0010 | 0.0012 | 0.0012
24 0.0000 | 0.0009 | 0.0019 | 0.0025 | 0.0027 | 0.0028 | 0.0027
2.5 0.0017 | 0.0039 | 0.0050 | 0.0054 | 0.0054 | 0.0051 | 0.0048
2.6 0.0068 | 0.0092 | 0.0099 | 0.0097 | 0.0092 | 0.0084 | 0.0077
2.7 0.0154 | 0.0169 | 0.0167 | 0.0156 | 0.0143 | 0.0129 | 0.0116
2.8 0.0276 | 0.0275 | 0.0258 { 0.0234 | 0.0210 | 0.0187 | 0.0166
2.9 0.0440 | 0.0414 | 0.0376 | 0.0335 | 0.0297 | 0.0262 | 0.0231
3.0 0.0651 | 0.0592 | 0.0527 | 0.0464 | 0.0407 | 0.0356 | 0.0313
3.1 0.0918 | 0.0816 | 0.0716 | 0.0624 | 0.0544 | 0.0474 | 0.0414
3.2 0.1251 | 0.1094 [ 0.0950 | 0.0823 | 0.0713 | 0.0620 | 0.0540
3.3 0.1661 | 0.1437 | 0.1239 | 0.1067 | 0.0922 | 0.0798 | 0.0694
3.4 0.2164 | 0.1856 | 0.1591 | 0.1366 | 0.1176 | 0.1016 | 0.0882
3.5 0.2774 | 0.2365 | 0.2018 | 0.1727 | 0.1484 | 0.1280 | 0.1109
3.6 0.3509 | 0.2978 | 0.2533 | 0.2163 | 0.1855 | 0.1598 | 0.1383
3.7 0.4393 | 0.3714 | 0.3151 | 0.2685 | 0.2299 | 0.1978 | 0.1710
3.8 0.5447 | 0.4592 | 0.3888 | 0.3308 | 0.2829 | 0.2432 | 0.2101
3.9 0.6700 | 0.5635 | 0.4763 | 0.4048 | 0.3458 | 0.2971 | 0.2565
4.0 0.8183 | 0.6869 [ 0.5798 | 0.4922 | 0.4202 | 0.3607 | 0.3113
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