• 제목/요약/키워드: Surface residual stress

검색결과 716건 처리시간 0.025초

Ni-Fe-P 합금전착에 미치는 Grain Refiner의 영향 (The Effect of Grain Refiner on Ni-Fe-P Alloy Electrodeposition)

  • 서무홍;김동진;김정수
    • 한국표면공학회지
    • /
    • 제36권6호
    • /
    • pp.437-443
    • /
    • 2003
  • The effects of additive(grain refiner, GR) on process efficiency of the Ni-Fe-P alloy electrodeposition and the material properties of the deposit were investigated. Electrochemical properties of the deposits were investigated using polarization and electrochemical impedance techniques, and the material properties of the deposits were characterized through inductively coupled plasma(ICP), spiral contractometer, XRD, SEM and TEM. When the additive was added into the electrodeposition bath, current efficiency, Ni content and corrosion resistance of the deposit increased, whereas residual stress, surface roughness and grain size of the deposit decreased.

Influence of ultrasonic impact treatment on microstructure and mechanical properties of nickel-based alloy overlayer on austenitic stainless steel pipe butt girth joint

  • Xilong Zhao;Kangming Ren;Xinhong Lu;Feng He;Yuekai Jiang
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4072-4083
    • /
    • 2022
  • Ultrasonic impact treatment (UIT) is carried out on the Ni-based alloy stainless steel pipe gas tungsten arc welding (GTAW) girth weld, the differences of microstructure, microhardness and shear strength distribution of the joint before and after ultrasonic shock are studied by microhardness test and shear punch test. The results show that after UIT, the plastic deformation layer is formed on the outside surface of the Ni-based alloy overlayer, single-phase austenite and γ type precipitates are formed in the overlayer, and a large number of columnar crystals are formed on the bottom side of the overlayer. The average microhardness of the overlayer increased from 221 H V to 254 H V by 14.9%, the shear strength increased from 696 MPa to 882 MPa with an increase of 26.7% and the transverse average residual stress decreased from 102.71 MPa (tensile stress) to -18.33 MPa (compressive stress), the longitudinal average residual stress decreased from 114.87 MPa (tensile stress) to -84.64 MPa (compressive stress). The fracture surface has been appeared obvious shear lip marks and a few dimples. The element migrates at the fusion boundary between the Ni-based alloy overlayer and the austenitic stainless steel joint, which is leaded to form a local martensite zone and appear hot cracks. The welded joint is cooled by FA solidification mode, which is forming a large number of late and skeleton ferrite phase with an average microhardness of 190 H V and no obvious change in shear strength. The base metal is all austenitic phase with an average microhardness of 206 H V and shear strength of 696 MPa.

X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구 (A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM)

  • 김성웅;홍순혁;전형용;조석수;주원식
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1645-1652
    • /
    • 2002
  • The failure analysis on fractured parts is divided into the qualitative method by naked eyes and metallurgical microscope etc. and the quantitative method by SEM and X-ray diffraction etc. X-ray fractography can be applied to contaminated surface as well as clean surface and gain the plastic deformation and the residual stress near the fractured surface. Turbine blade is subject to cyclic bending force by steam pressure and suffers fatigue damage according to the increasing operating time. Therefore, to clean up the fracture mechanism of torsion-mounted blade in nuclear plant, the fatigue and the X-ray diffraction test was performed on the 12%Cr steel fur turbine blade and the fractured parts. The correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade was predicted. Failure analysis was performed by contact stress analysis and Goodman diagram of torsion-mounted blade.

치과용 지르코니아 이장재 처리에 따른 지르코니아와 도재의 전단결합강도 비교 (Shear bond strength of a layered zirconia and porcelain according to treatment of zirconia liner)

  • 서정일;박원욱;김양근
    • 대한치과기공학회지
    • /
    • 제39권1호
    • /
    • pp.43-52
    • /
    • 2017
  • Purpose: Physical and chemical properties of gold is most suitable to be restored of teeth to its original state. Recently zirconia was used instead of gold because of esthetical and intimacy of human body. Because of high strength and high abrasion resistance of zirconia, all zirconia artificial tooth lead to wear the original tooth of opposite site. To preserve this original tooth, zirconia artificial tooth covered with dental ceramic glass was used. When joining the zirconia core and dental ceramic glass, difference of their thermal expansion coefficient and wetting ability is generated the residual stress at interface lead to crack. In order to solve this problem, intermediate layer what is called zir-liner was imported to decrease the residual stress and increase the bonding strength. Methods: In this study, to identify the optimum conditions for manufacturing process, various methods to rough the surface of zirconia core were adopted, and vary the thickness of interlayer, and analyzed bond strength. Results: Bond strength of sanding specimens group showed higher than that of non-sanding specimens group, and once applied intermediate layer with sanding specimens showed highest bond strength with 28 MPa. SEM photomicrographs of zirconia cores fired at $1500^{\circ}C$ showed parallel straight lines in sanding and pockmarked surface in blasting surfaces as abrasion traces. Observation of the destruction section after shear test by SEM were carried out. Liner applied non-sanding group and non-liner applied sanding group all showed interfacial crack. Sandblasting group with non-liner showed remained dental ceramic glass on the surface of zirconia. Sandblasting group with once applied liner showed partially remained liner and dental ceramic glass on the surface of zirconia. XRD analysis revealed that sandblasting group showed higher monoclinic peaks than other specimens group and this result was due to the high collision energy for stress induced phase transformation. Conclusions: A study on the improvement of bonding strength between zirconia and dental ceramic glass steadily carried out for the future to practical use.

표면미세가공시 발생하는 MEMS 구조물의 변형 억제 (Alleviating Deformation of MEMS Structure in Surface Micromachining)

  • 홍석관;권순철;전병희;신형재
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.163-170
    • /
    • 2006
  • By removing sacrificial layer through ashing process, movable MEMS structure on substrate can be fabricated in surface micromachining. However, MEMS structure includes, during the ashing process, the warping or buckling effects due to stress gradient along the vertical direction of thin film. In this study, we presented method for counteracting the unwanted deflection of MEMS structure and designed using character of deposit process to overcome limited design conditions. Unit cell patterns were designed with character of deposit shape, and their final shapes were adopted using Finite Element Method. Finally, RF MEMS switch was fabricated by surface micro machining as test vehicles. We checked out that alleviation effect for deformation of switch improved by 35%.

SiAlON Bulk Glasses and Their Role in Silicon Nitride Grain Boundaries: Composition-Structure-Property Relationships

  • Hampshire, Stuart;Pomeroy, Michael J.
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.301-307
    • /
    • 2012
  • SiAlON glasses are silicates or alumino-silicates, containing Mg, Ca, Y or rare earth (RE) ions as modifiers, in which nitrogen atoms substitute for oxygen atoms in the glass network. These glasses are found as intergranular films and at triple point junctions in silicon nitride ceramics and these grain boundary phases affect their fracture behaviour. This paper provides an overview of the preparation of M-SiAlON glasses and outlines the effects of composition on properties. As nitrogen substitutes for oxygen in SiAlON glasses, increases are observed in glass transition temperatures, viscosities, elastic moduli and microhardness. These property changes are compared with known effects of grain boundary glass chemistry in silicon nitride ceramics. Oxide sintering additives provide conditions for liquid phase sintering, reacting with surface silica on the $Si_3N_4$ particles and some of the nitride to form SiAlON liquid phases which on cooling remain as intergranular glasses. Thermal expansion mismatch between the grain boundary glass and the silicon nitride causes residual stresses in the material which can be determined from bulk SiAlON glass properties. The tensile residual stresses in the glass phase increase with increasing Y:Al ratio and this correlates with increasing fracture toughness as a result of easier debonding at the glass/${\beta}-Si_3N_4$ interface.

준등방성 복합적층판의 저속충격에 의한 손상특성 (Damage Characteristics of Quasi Isotropic Composite Laminates Subjected to Low Velocity Impact)

  • 김재훈;전제춘
    • 한국정밀공학회지
    • /
    • 제14권6호
    • /
    • pp.135-141
    • /
    • 1997
  • Low velocity impact test and compressive residual strength test after impact were performed by using Hercules AS4/3501-6[45/0/-45/90]$_{2s}$ laminated plate to investigate the low velocity impact damage behavior and the post-impact strength degradation on orthotropic composite laminate plate. Due to the lateral impact losd, the load path showed "" shape according to the laminate central deflection. Damage in a laminate occurs by inclined matrix crack at the damage initiation load stage and vertical matrix crack, occurs on the outer surface. Evaluating the compressive residual strength after the low velocty impact test, it could be found that there is a transient range where the compressive residual strength drop suddenly in the initial damage which is in the matrix crack range and the initial delamination area. is in the matrix crack range and the initial delamination area.

  • PDF

Ti-6Al-4V재의 UNSM처리에 의한 축인장압축피로특성변화 (Variation of Axial Tension-Compression Fatigue Characteristics by UNSM on Ti-6Al-4V)

  • 서창민;조성암;편영식;서민수
    • 한국해양공학회지
    • /
    • 제25권6호
    • /
    • pp.42-48
    • /
    • 2011
  • The present study makes three original contributions to nanoskinned Ti-6Al-4V materials. The nanoskins were fabricated on Ti-6Al-4V material using various surface treatments: deep rolling (DR), laser shot peening (LSP), and ultrasonic nanocrystal surface modification (UNSM). These surface treatments are newly developed techniques and are becoming more popular in industrial fields. A fatigue strength comparison at up to 106 cycles was conducted on these nanoskinned Ti-6Al-4V materials. Fatigue tests were carried out using MTS under axial loading tension-compression fatigue (R = -1, RT, 5 Hz, sinusoidal wave). The analysis of the crack initiation patterns in the nanoskinned Ti-6Al-4V materials found an interior originating crack pattern and surface originating crack type. Microscopic observation was mainly used to investigate the fatigue fractured sites. These surface modification techniques have been widely adopted, primarily because of the robust grade of their mechanical properties. These are mainly the result of the formation of a large-scale, deep, and useful compressive residual stress, the formation of nanocrystals by the severe plastic deformation (SPD) at the subsurface layer, and the increase in surface hardness.

플라즈마 침탄한 저탄소 Cr-Mo강의 피로특성에 관한 연구 (A study on fatigue properties of plasma carburized low carbon Cr-Mo steel)

  • 박경봉;신동명;이창열;이경섭
    • 한국재료학회지
    • /
    • 제10권7호
    • /
    • pp.505-514
    • /
    • 2000
  • 플라즈마 침탄한 저 탄소 Cr-Mo 강(0.176C-1.014Cr-0.387Mo)의 침탄 특성과 피로성질을 고찰하였다. 플라즈만 침탄한 시편의 유효경화깊이는 가스 침탄한 시편에 대해 상대적으로 침타나시간이 짧고 침탄온도가 낮음에도 불구하고 50%정도까지 증가되었다. 플라즈만 침탄시 유효경화깊이의 증가는 표면탄소농도의 증가와 같은 경향을 보였으며, 표면탄소농도의 증가와 같은 경향을 보였으며, 표면탄소농도의 증가율이 침탄시간의 증가에 따라 감소하였다. 플라즈만 침탄간의 피로한도는 가스 침탄강의 경우보다 높았다. 이를 표면근처의 미세구조, 경화깊이 잔류, 오스테나이트와 압축잔류응력으로 조사한 결과 경화깊이와 압축잔류응력의 차이가 거의 없었다. 따라서 플라즈만 침탄의 피로강도 향상은 가스침탄에 비해 표면이 상승층이 저감되어 표면에서의 미소균열의 발생 및 초기 균열 전파과정이 지연 되어진 것으로 판단된다. 파단면 관찰결과 표면에서 균열이 시작되고 플라즈마 침탄의 경우 입내파괴가 현저하였다.

  • PDF

보수용접부 폭에 따른 용접잔류응력의 변화 및 재분배 거동 평가 (Investigation into Variations of Welding Residual Stresses and Redistribution Behaviors for Different Repair Welding Widths)

  • 박치용;이휘승;허남수
    • 대한기계학회논문집A
    • /
    • 제38권2호
    • /
    • pp.177-184
    • /
    • 2014
  • 본 논문에서는 보수용접부 폭 변화에 따른 이종금속 맞대기 용접부(Dissimilar metal butt weld) 용접잔류응력의 분포 및 동종금속용접/기계적 하중에 의한 재분배 거동을 평가하였다. 이를 위해 5가지 다른 보수용접부 폭을 고려한 상세 2차원 유한요소 열해석 및 응력해석을 수행하였다. 유한요소해석 결과를 바탕으로 보수용접에 의한 용접잔류응력 분포를 평가하였으며, 동종금속용접 및 기계적 하중에 의한 응력 재분배 특성을 평가하였다. 보수용접에 의해 배관 내면에서는 큰 인장 용접잔류응력이 축방향과 원주방향에 대해 발생하는 것으로 나타났으며 보수용접부 폭이 특정값 이상이 되면 용접잔류응력 분포가 변하는 것으로 나타났다. 그러나 동종금속용접과 기계적 하중을 고려하면 인장잔류응력값이 크게 감소하였으며 그 경향은 보수용접부 폭에 무관한 것으로 나타났다.