• Title/Summary/Keyword: Surface reconstruction

Search Result 575, Processing Time 0.036 seconds

Biomedical Applications of Stereoscopy for Three-Dimensional Surface Reconstruction in Scanning Electron Microscopes

  • Kim, Ki Woo
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.71-75
    • /
    • 2016
  • The scanning electron microscope (SEM) offers two-dimensional (2D) micrographs of three-dimensional (3D) objects due to its inherent operating mechanisms. To overcome this limitation, other devices have been used for quantitative morphological analysis. Many efforts have been made on the applications of software-based approaches to 3D reconstruction and measurements by SEM. Based on the acquisition of two stereo images, a multi-view technique consists of two parts: (i) geometric calibration and (ii) image matching. Quantitative morphological parameters such as height and depth could be nondestructively measured by SEM combined with special software programs. It is also possible to obtain conventional surface parameters such as roughness and volume of biomedical specimens through 3D SEM surface reconstruction. There is growing evidence that conventional 2D SEM without special electron detectors can be transformed to 3D SEM for quantitative measurements in biomedical research.

LONG TERM MONITORING OF HYDRARGYRUM POLLUTED SOIL USING PROJECTED IMAGE RECONSTRUCTION IN ELECTRICAL IMPEDANCE TOMOGRAPHY

  • Munkh-Erdne, Ts;Lee, Eunjung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.167-180
    • /
    • 2014
  • In this paper we consider a novel reconstruction method in electrical impedance tomography (EIT) and its application for monitoring and detecting a hydrargyrum (mercury) polluted soil near to the surface of underground. We use electrodes placed on the surface of land to collect the data which provides the relations of voltage and current map and to produce a projected image of interior conductivity distribution onto the surface of land. Here the projected image reconstruction method is used to monitor the pollution in soil underneath the ground without any destruction and any digging into a land.

3D Shape Reconstruction of Cross-sectional Images using Image Processing Technology and B-spline Approximation (영상 처리 기법과 B-spline 근사화를 이용한 단면영상의 3차원 재구성)

  • 임오강;이진식;김종구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.93-100
    • /
    • 2001
  • The three dimensional(3D) reconstruction from two dimensional(2D) image data is using in many fields such as RPD(Rapid Product Development) and reverse engineering. In this paper, the main step of 3D reconstruction is comprised of two steps : image processing step and B-spline surface approximation step. In the image processing step, feature points of each cross-section are obtained by means of several image processing technologies. In the B-spline surface approximation step, using the data of feature points obtained in the image processing step, the control points of B-spline surface are obtained, which are used for IGES file of 3D CAD model.

  • PDF

Quilting Effect and Appearance Change according to Fabric Properties and Surface Reconstruction Method based on 3D Digital Clothing System

  • Yoon, Jihae;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.16 no.6
    • /
    • pp.36-51
    • /
    • 2012
  • Quilting, a technique to join two or more layers of fabrics, has long been used in the textile and fashion sectors. To evaluate dimensional effect of quilting that changes according to the characteristics of fabrics, 3D scanning method is employed in this study. Goal of this study is to interpret how fabric's composition, stiffness, thickness, and weight affect the appearance when quilted fabrics are used in a garment. Surface reconstruction method based on 3D scanning is used as a research method to evaluate the changing appearance depending on the material properties quantitatively with the quilting method. Besides, exemplary virtual clothing is realized through a virtual quilting method in 3D digital clothing system based on the properties of fabrics.

3-D Reconstruction of Buildings using 3-D Line Grouping for Urban Modeling

  • Jung, Young-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In order to obtain a 3-D urban model, an abstraction of the surface model is required. This paper describes works on the 3D reconstruction and modeling by the grouping 3D line segments extracted from the stereo matching of edges, which is derived from multiple images. The grouping is achieved by conditions of degrees and distances between lines. Building objects are determined by the junction combinations of the grouped line segments. The proposed algorithm demonstrates effective results of 3D reconstruction of buildings with 2D aerial images.

Epitaxial Growth of GaAs Thin Films Using MOCVD (MOCVD를 이용한 GaAs 박막의 에피성장)

  • So, Myoung-Gi
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.59-64
    • /
    • 2004
  • GaAs thin films were grown epitaxially by MOCVD method on (001) GaAs substrate. And as a surfactant, Bi(bismuth) thin films were deposited on GaAs buffer layer by using TMBi(trimethylbismuth) source. In-situ reflectance difference spectroscopy(RDS) was used to monitor the surface reconstruction of GaAs and Bi thin films. As the results, under the exposure of TBAs(tertiarybuthylarsine) and hydrogen atmosphere, the surface reconstruction of GaAs was changed from As-rich c($4{\times}4$) to As-rich ($2{\times}4$), which was due to the adsoption and desorption of As dimers. The first bismuth surface related RDS signal was reported. At the deposition temperature of $450^{\circ}C$, Bi-terminated GaAs surface showed the RDS spectrum similar to that of Sb-terminated GaAs surface, possibly a ($2{\times}4$) surface. And Bi surface layers were rapidly evaporated with increasing the deposition temperature($550^{\circ}C$), finally becoming As-terminated ($2{\times}4$) surface.

  • PDF

UHV x-ray scattering system for surface structural studies (표면원자구조 연구를 위한 초고진공 X-선 산란 장치)

  • 김효정;강현철;노도영;강태수;제정호;김남동;이성삼;정진욱
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.93-97
    • /
    • 2001
  • We introduce the structure and the capability of a UHV x-ray scattering system constructed for surface structural studies. The system consists of vacuum parts required for surface preparation and a vertical-horizontal diffractometer using the S2D2 geometry. To illustrate the capability of the system, we measured the 7$\times$7 reconstruction peak of a Si (111) surface. The peak count rate was 216 counts/sec and the domain size of the 7$\times$7 reconstruction was larger than 1600 $\AA$. This demonstrates that the system is capable of providing surface structural information.

  • PDF

Ellipse-Stacking Methods for Image Reconstruction in Compton Cameras (컴프턴 카메라 영상재구성을 위한 타원 누적법)

  • Lee, Mi-No;Lee, Soo-Jin;Kim, Soo-Mee;Lee, Jae-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.520-529
    • /
    • 2007
  • An efficient method for implementing image reconstruction algorithms for Compton cameras is presented. Since Compton scattering formula establishes a cone surface from which the incident photon must have originated, it is crucial to implement a computationally efficient cone-surface integration method for image reconstruction. In this paper we assume that a cone is made up of a series of ellipses (or circles) stacked up one on top of the other. In order to reduce computational burden for tracing ellipses formed by the intersection of a cone and an image plane, we propose a new method using a series of imaginary planes perpendicular to the cone axis so that each plane contains a circle, not an ellipse. In this case the cone surface integral can be performed by simply accumulating the circles along the cone axis. To reduce the computational cost of tracing circles, only one of the circles in the cone is traced and the rest are determined by using simple trigonometric ratios. For our experiments, we used the three different schemes for tracing ellipses; (i) using the samples generated by the ellipse equation, (ii) using the fixed number of samples along a circle on the imaginary plane, and (iii) using the fixed sampling interval along a circle on the imaginary plane. We then compared performance of the above three methods by applying them to the two reconstruction algorithms - the simple back-projection method and the expectation-maximization algorithm. The experimental results demonstrate that our proposed methods (ii) and (iii) using imaginary planes significantly improve reconstruction accuracy as well as computational efficiency.

Three Dimensional Volume Reconstruction of an Object from X-ray Iamges using Uniform and Simultaneous ART (USART 방법에 의한 X선 영상으로부터의 삼차원 물체의 형상 복원)

  • Roh, Young-Jun;Cho, Hyung-Suck;Kim, Hyeong-Cheol;Kim, Jong-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • Inspection and shape measurement of three-dimensional objects are widely needed in industries for quality monitoring and control. A number of visual or optical technologies have been successfully applied to measure three-dimensional surfaces. However, those conventional visual or optical methods have inherent shortcomings such as occlusion and variant surface reflection. X-ray vision system can be a good solution to these conventional problems, since we can extract the volume information including both the surface geometry and the inner structure of any objects. In the x-ray system, the surface condition of an object, whether it is lambertian or specular, does not affect the inherent characteristics of its x-ray images. In this paper, we propose a three-dimensional x-ray imaging method to reconstruct a three dimensional structure of an object out of two dimensional x-ray image sets. To achieve this by the proposed method, two or more x-ray images projected from different views are needed. Once these images are acquired, the simultaneous algebraic reconstruction technique(SART) is usually utilized. Since the existing SART algorithms have several shortcomings such as low performance in convergence and different convergence within the reconstruction volume of interest, an advanced SART algorithm named as USART(uniform SART) is proposed to avoid such shortcomings and improve the reconstruction performance. Because, each voxel within the volume is equally weighted to update instantaneous value of its internal density, it can achieve uniform convergence property of the reconstructed volume. The algorithm is simulated on various shapes of objects such as a pyramid, a hemisphere and a BGA model. Based on simulation results the performance of the proposed method is compared with that of the conventional SART method.

Plasma Surface Modification of Patterned Polyurethane Acrylate (PUA) Film for Biomedical Applications

  • Yun, Young-Shik;Kang, Eun-Hye;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.223.2-223.2
    • /
    • 2015
  • Polyurethane acrylate (PUA) has been introduced to utilize as a mold material for sub-100 nm lithography as it provides advantages of stiffness for nanostructure formation, short curing time, flexibility for large area replication and transparency for relevant biomedical applications. Due to the ability to fabricate nanostructures on PUA, there have been many efforts to mimic extracellular matrix (ECM) using PUA especially in a field of tissue engineering. It has been demonstrated that PUA is useful for investigating the nanoscale-topographical effects on cell behavior in vitro such as cell attachment, spreading on a substrate, proliferation, and stem cell fate with various types of nanostructures. In this study, we have conducted surface modification of PUA films with micro/nanostructures on their surfaces using plasma treatment. In general, it is widely known that the plasma treated surface increases cell attachment as well as adsorption of ECM materials such as fibronectin, collagen and gelatin. Effect of plasma treatment on PUA especially with surface of micro/nanostructures needs to be understood further for its biomedical applications. We have evaluated the modified PUA film as a culture platform using adipose derived stem cells. Then, the behavior of stem cells and the level of adsorbed protein have been analyzed.

  • PDF