• Title/Summary/Keyword: Surface reaction controlled

Search Result 226, Processing Time 0.025 seconds

In-situ phosphorus doping effect on epitaxial growth of $Si_{1-x}Ge_{x}$ film with high ge fraction (고농도 ge fraction을 갖는 $Si_{1-x}Ge_{x}$ 막의 epitaxial growth에 대한 in-situ phosphorus doping 효과)

  • 이철진;박정훈;김성진
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.437-440
    • /
    • 1998
  • We studied phosphorus doping effect on the epitaxial growth of $Si_{1-x}Ge_{x}$ film with high Ge fraction on Si substates at 550.deg. C by LPCVD. In a low $Ph_{3}$ partial pressure region such as below 1.25 mPa, the phosphorus dopant concentration increased linearly with increasing $PH_{3}$ partial pressure while the deposition rate and the Ge fraction were constant. In a higher $PH_{3}$ partial pressure region, the phosphorus dopant concentration and the deposition rate decreased, while the Ge fraction slightly increased. The deposition arate and the Ge fraction increased with increasing $GeH_{4}$ partial pressure while the phophours dopant concentration decreased. But the increasing rate of Ge fraction with incrasing $PH_{3}$ partial pressure was reduced at a high $GeH_{4}$ partial pressure. According to test results, it suggests that high surface coverage of phosphorus atoms suppress both the $SiH_{4}$ adsorption/reasction and the $GeH_{4}$ adsorption/reaction on the surfaces, and the effect is more stronger on $SiH_{4}$ than on $GeH_{4}$. In a higher $PH_{3}$ partial pressure region, the epitaxial growth is largely controlled by surface coverage effect of phosphorus atoms. The phosphorus surface coverage was slimited at a high $GeH_{4}$ partial pressure because adsorbed Ge atoms effectively suppresses the adsorption of phosphorus atoms.

  • PDF

Geochemical Modeling of Groundwater in Granitic Terrain: the Yeongcheon Area (영천 화강암지역 지하수의 지화학적 모델링)

  • Koh, Yong-Kwon;Kim, Chun-Soo;Bae, Dae-Seok;Yun, Seong-Taek
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.192-202
    • /
    • 1998
  • We investigated the geochemistry and environmental isotopes of granite-bedrock groundwater in the Yeongcheon diversion tunnel which is located about 300 m below the land surface. The hydrochemistry of groundwaters belongs to the Ca-HCO$_3$type, and is controlled by flow systems and water-rock interaction in the flow conduits (fractures). The deuterium and oxygen-18 data are clustered along the meteoric water line, indicating that the groundwater are commonly of meteoric water origin and are not affected by secondary isotope effects such as evaporation and isotope exchange. Tritium data show that the groundwaters were mostly recharged before pre-thermonuclear period and have been mixed with younger surface water flowing down rapidly into the tunnel along fractured zones. Based on the mass balance and reaction simulation approaches, using both the hydrochemistry of groundwater and the secondary mineralogy of fracture-filling materials, we have modeled the low-temperature hydrogeochemical evolution of groundwater in the area. The results of geochemical simulation show that the concentrations of Ca$\^$2+/, Na$\^$+/ and HCO$_3$and pH of waters increase progressively owing to the dissolution of reactive minerals in flow paths. The concentrations of Mg$\^$2+/ and K$\^$+/ frist increase with the dissolution, but later decrease when montmorillonite and illitic material are precipitated respectively. The continuous adding of reactive minerals, namely the progressively larger degrees of water/rock interaction, causes the formation of secondary minerals with the following sequence: first hematite, then gibbsite, then kaolinite, then montmorillonite, then illtic material, and finally microcline. During the simulation all the gibbsite is consumed, kaolinite precipitates and then the continuous reaction converts the kaolinite to montmorillonite and illitic material. The reaction simulation results agree well with the observed, water chemistry and secondary mineralogy, indicating the successful applicability of this simulation technique to delineate the complex hydrogeochemistry of bedrock groundwaters.

  • PDF

An Experimental Guide to Predictable Fuel Cell Operations by Controlling External Gas Supply (외부 유입 가스 조절을 통한 연료전지 구동 성능 안정화)

  • Jang, Hansaem;Park, Youngeun;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.626-629
    • /
    • 2018
  • Fuel cell is one of the promising electrochemical technologies enabling power production with various fuel sources such as hydrogen, hydrocarbon and even solid carbon. However, its long-term performance is often unstable and unpredictable. In this work, we observed that gasification-driven hydrocarbons were the culprit of unpredictability. Therefore, we controlled the presence of hydrocarbons with the help of external gas supply, i.e. argon and carbon dioxide, and suggested the optimal amount of carbon dioxide required for predictable fuel cell operations. Our optimization strategy was based upon the following observations; carbon dioxide can work as both an inert gas and a fuel precursor, depending on its amount present in the reactor. When deficient, the carbon dioxide cannot fully promote the reverse Boudouard reaction that produces carbon monoxide fuel. When overly present, the carbon dioxide works as an inert gas that causes fuel loss. In addition, the excessive carbon monoxide may result in coking on the catalyst surface, leading to the decrease in the power performance.

Preparation of Nickel Nanopowder using the Transferred Arc Plasma for MLCCs (이송식 아크 플라즈마를 이용한 MLCC용 니켈 나노분말의 합성)

  • Jung, Da-Woon;Oh, Seung-Min;Park, Dong-Wha
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.701-706
    • /
    • 2008
  • Nano-sized nickel powders were prepared by evaporating the bulk nickel metarial using transferred arc thermal plasma. Nitrogen gases are easily dissociated to atomic nitrogen in thermal plasma and they are quickly dissolved in molten nickel. Super-saturated atomic nitrogen in molten nickel is recombined to nitrogen gas because of the relatively low temperature of nickel surface. Generally, the recombine reaction of atomic nitrogen is exothermic, so bulk nickel is quickly evaporated to nickel vapor due to the thermal energy of recombine reaction. The particle size of nickel powder was controlled by $N_2$ used as the diluting gas. It was observed that as the diluting gas flow rate was increase, the particle size was decreased and the particle size distribution was narrowed. The average particle size at 250 l/min of the diluting gas was 202 nm analyzed by means of the particle size analyzer (PSA).

Effect of Zirconia Particle Addition on Curing Behavior of Phenolic Resins (Zirconia 입자의 첨가가 페놀 수지의 경화거동에 미치는 영향)

  • Yun, Jaeho;Kim, Hanjun;Lee, Jae Min;Kim, Jong Hee;Lee, Seung Goo
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.288-297
    • /
    • 2022
  • This study investigated the effect of addition of zirconia(zirconium oxide) powder on the curing behavior of phenolic resins. The heating rate controlled curing and isothermal curing behaviors of the phenol resin according to the content of the zirconia powder were analyzed. The viscosity and thermal decomposition characteristics of the phenolic resin with the zirconia content were also examind. From the DSC analysis, the degree of cure and the rate of cure were obtained. Finally, the activation energy for the cure reaction were calculated from the DSC data of the zirconia added phenolic resin. As a found, the higher the zirconia content, the longer the curing was delayed and the greater the activation energy required for curing. Additionally, the TGA result that as the content of zirconia increased, less weight loss was observed. The surface tackiness of the Carbon/Phenol prepreg was partially changed according to the zirconia content, but had no significant effect.

Growth of highly purified carbon nanotubes by thermal chemical vapor deposition (열화학기상증착법에 의한 고순도 탄소나노튜브의 성장)

  • Lee, Tae-Jae;Lee, Cheol-Jin;Kim, Dae-Won;Park, Jung-Hoon;Son, Kwon-Hee;Lyu, Seung-Chul;Song, Hong-Ki;Kim, Seong-Jeen
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1839-1842
    • /
    • 1999
  • We have synthesized carbon nanotubes by thermal chemical vapor deposition of $C_2H_2$ on transition metal-coated silicon substrates. Carbon nanotubes are uniformly synthesized on a large area of the plain Si substrates, different from Previously reported porous Si substrates. It is observed that surface modification of transition metals deposited on substrates by either etching with dipping in a HF solution and/or $NH_3$ pretreatment is a crucial step for the nanotube growth prior to the reaction of $C_2H_2$ gas. We will demonstrate that the diameters of carbon naotubes can be controlled by applying the different transition metals.

  • PDF

ION BEAM AND ITS APPLICATIONS

  • Koh, S.K.;Choi, S.C.;Kim, K.H.;Cho, J.S.;Choi, W.K.;Yoon, Y.S.;Jung, H.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.110-114
    • /
    • 1997
  • Development of metal ion source growth of high quality Cu metal film formation of non-stoichiometric $SnO_2$ films of Si(100), and modification fo polymer surface by low enregy ion beam have been carried out at KIST Ion Beam Lab. A new metal ion source with high ion beam flux has been developed by a hybrid ion beam (HIB) deposition and non-stoichiometric $SnO_2$ films are controlled by supplying energy. The ion assisted reaction (IAR) in which keV ion beam is irradiated in reactive gas environment has been deveolped for modifying the polymers and enhancing adhesion to other materials and advantages of the IAR have been reviewed.

  • PDF

Preparation of Pt/C catalyst for PEM fuel cells using polyol process (Polyol Process를 통한 PEM Fuel Cell용 Pt/C촉매 제조)

  • Oh, Hyoung-Seok;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.443-446
    • /
    • 2006
  • Carbon-supported Platinum (Pt) is the potential electro-catalyst material for anodic and cathodic reactions in fuel cell. Catalytic activity of the metal strongly depends on the particle shape, size and distribution of the metal in the porous supportive network. Conventional preparation techniques based on wet impregnation and chemical reduction of the metal precursors often do not provide adequate control of particle size and shape. We have proposed a novel route for preparing nano sized Pt colloidal particles in solution by oxidation of ethylene glycol. These Pt nano particles were deposited on large surface area carbon support. The process of nano Pt colloid formation involves the oxidation of solvent ethylene glycol to mainly glycolic acid and the presence of its anion glycolate depends on the solution pH. In the process of colloidal Pt formation glycolate actsas stabilizer for the Pt colloidal particle and prevents the agglomeration of colloidal Pt particles. These mono disperse Pt particles in carbon support are found uniformly distributed in nearly spherical shape and the size distribution was narrow for both supported and unsupported metals. The average diameter of the Pt nano particle was controlled in the range off to 3 nm by optimizing reaction parameters. Transmission electron microscopy, CV and RRDE experiments were used to compliment the results.

  • PDF

Fabrication of WS2-W-WC Embedded Carbon Nanofiber Composites for Supercapacitors (슈퍼 커패시터를 위한 WS2-W-WC가 내장된 탄소나노섬유 복합체의 제조)

  • Lee, Yu-Jin;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.116-121
    • /
    • 2015
  • $WS_2$-W-WC embedded carbon nanofiber composites were fabricated by using electrospinning method for use in high-performance supercapacitors. In order to obtain optimum electrochemical properties for supercapacitors, $WS_2$ nanoparticles were used as precursors and the amounts of $WS_2$ precursors were controlled to 4 wt% (sample A) and 8 wt% (sample B). The morphological, structural, and chemical properties of all samples were investigated by means of field emission photoelectron spectroscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. These results demonstrated that the embedded phases of samples A and B were changed from $WS_2$ to $WS_2$-W-WC through carbothermal reaction during carbonization process. In particular, sample B presented high specific capacitance (~119.7 F/g at 5 mV/s), good high-rate capacitance (~60.5%), and superb cycleability. The enhanced electrochemical properties of sample B were explained by the synergistic effect of the using 1-D structure supports, increase of specific surface area, and improved conductivity from formation of W and WC phases.

Large scale synthesis of the geometrically controlled carbon coils using $Al_2O_3$ ceramic boat for the supporting substrate (산화알루미늄 세라믹 보트 기판을 이용한 탄소마이크로 코일의 대량 합성)

  • Kim, Sung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.423-430
    • /
    • 2013
  • Carbon coils could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition (CVD) system. Prior to the carbon coils deposition reaction, two kinds of samples having different combination of Ni catalyst and substrate were employed, namely, a commercially-made $Al_2O_3$ ceramic boat with Ni powders and a commercially-made $Al_2O_3$ substrate with Ni layer. By using a commercially-made $Al_2O_3$ ceramic boat, the synthesis of carbon coils could be enhanced as much as 10 times higher than that of $Al_2O_3$ substrate. Furthermore, the dominant formation of the microsized carbon coils could be obtained by using $Al_2O_3$ ceramic boat. The surface roughness of the supporting substrate of $Al_2O_3$ ceramic boat was understood to be associated with the large scale synthesis of carbon coils as well as the dominant formation of the larger-sized, namely the microsized carbon coils.