Preparation of Nickel Nanopowder using the Transferred Arc Plasma for MLCCs

이송식 아크 플라즈마를 이용한 MLCC용 니켈 나노분말의 합성

  • Jung, Da-Woon (Department of Chemical Engineering, Inha University) ;
  • Oh, Seung-Min (Nano Metals Division, Daejoo Electronic Materials Co., Ltd) ;
  • Park, Dong-Wha (Department of Chemical Engineering, Inha University)
  • 정다운 (인하대학교 화학공학과 플라즈마공정연구실) ;
  • 오성민 (대주전자재료(주) 나노재료사업부) ;
  • 박동화 (인하대학교 화학공학과 플라즈마공정연구실)
  • Received : 2008.04.04
  • Accepted : 2008.05.07
  • Published : 2008.08.31

Abstract

Nano-sized nickel powders were prepared by evaporating the bulk nickel metarial using transferred arc thermal plasma. Nitrogen gases are easily dissociated to atomic nitrogen in thermal plasma and they are quickly dissolved in molten nickel. Super-saturated atomic nitrogen in molten nickel is recombined to nitrogen gas because of the relatively low temperature of nickel surface. Generally, the recombine reaction of atomic nitrogen is exothermic, so bulk nickel is quickly evaporated to nickel vapor due to the thermal energy of recombine reaction. The particle size of nickel powder was controlled by $N_2$ used as the diluting gas. It was observed that as the diluting gas flow rate was increase, the particle size was decreased and the particle size distribution was narrowed. The average particle size at 250 l/min of the diluting gas was 202 nm analyzed by means of the particle size analyzer (PSA).

이송식 아크 열플라즈마를 이용하여 벌크상태의 니켈을 증발시킨 후 급속한 냉각과정을 거쳐 니켈 나노입자를 합성하였다. 플라즈마에 의해 질소가 용이하게 해리되어 용융된 니켈속으로 용해되고 과포화된 질소원자는 질소 분자로 가스화반응을 하여 반응열을 발산하는데 그 반응열에 의해 다량의 니켈증기가 생성된다. 생성된 니켈증기는 희석가스와 냉각가스를 이용하여 나노 입자 크기의 니켈분말로 제조된다. 희석가스 유량이 증가할수록 입자크기는 감소하였으며 그 분포경향이 작은 크기에서 좁게 나타났다. 평균입자크기는 희석가스 유량이 250 l/min에서 202 nm로 분석되었으며 모든 입자는 250 nm 이하 크기에서 존재함을 확인하였다.

Keywords

Acknowledgement

Supported by : 인하대학교

References

  1. Davis, S. C. and Klabunde, K. J., "Unsupported Small Metal Particles: Preparation, Reactivity, and Characterization," Chem. Rev., 82. 153-208(1982) https://doi.org/10.1021/cr00048a002
  2. Tseng, W. J. and Lin, S.Y., "Effect of Polymeric Surfactant on Flow Behaviors of Nickel-ethanol-isopropanol Suspensions," Mater. Sci. Eng., A362, 160-166(2003)
  3. Oh, S. M. and Park, D. W., "Thermal Plasma Processing for Producing Ultra-fine Powders," J. Koran Ind. Eng. Chem., 16(3), 305-311(2003)
  4. Degen, A. and Macek, J., "Preparation of Submicrometer Nickel Powders by The Reduction from Nonaqueous Media," Nanostru. Mater., 12, 225-228(1999) https://doi.org/10.1016/S0965-9773(99)00104-X
  5. Pollet, M., Marinel, S. and Desgardin, G., "$CaZrO_3$, a Ni-co-sinterable Dielectric Material for Base Metal-multilayer Ceramic Capacitor Applications," J. Euro. Ceram, Soc., 24, 119-127(2004) https://doi.org/10.1016/S0955-2219(03)00122-5
  6. Matteazzi, P., Basset, D., Miani, E. and Le Cair, G., "Mechanosynthesis of Nanophase Materials," Nanostru. Mater., 2, 217-229(1993) https://doi.org/10.1016/0965-9773(93)90149-6
  7. Lewis, L. N., and Lewis, N., "Platinum-Catalyzed Hydrosilylation-Colloid Formation as the Essential Step, " J. Am. Chem. Soc., 108(23), 7228-7231(1986) https://doi.org/10.1021/ja00283a016
  8. Hwa, W. J., Lee, S. D., Lee, Y. B., Park, H. C., Kim, K. H. and Park, S. S., "Preparation of Nickel Powders Using Microwave-Assisted Hydrothermal Synthesis," J. Koran Ind. Eng. Chem., 15(7), 715-719(2004)
  9. Terwiiliger, C. D. and Chiang, Y.-M., "The effect of Calcium Segregation on Grain Growth in Nanocrystalline $TiO_2$," Nanostru. Mater., 4(6), 651-661(1994) https://doi.org/10.1016/0965-9773(94)90017-5
  10. Ying, Z., Shengming, J., Guanzhou, Q. and Min, Y., "Preparation of Ultrafine Nickel Powder by Polyol Method and Its Oxidation Product," Mater. Sci. Eng., B122, 222-225(2005)
  11. Lee, J. E., Oh, S. M. and Park, D. W., "Synthesis of Nano-sized Al Doped $TiO_2$ Powders Using Thermal Plasma," Thin Solid Films, 457, 230-234(2004) https://doi.org/10.1016/j.tsf.2003.12.027
  12. Stopic, S., Nedeljkovic, J., Rakocevic, Z. and Uskokovic, D., "Influence of Additives on the Properties of Spherical Nickel Particles Prepared by Ultrasonic Spray Pyrolysis," J. Mater. Res., 14(7), 3059-3065(1999) https://doi.org/10.1557/JMR.1999.0410
  13. Lee, S. H., Oh, S. M. and Park, D. W., "Preparation of Silver Nanopowder by Thermal Plasma," Mater. Sci. Eng., C27, 1286-1290(2006)
  14. Oh, S. M. and Park, D. W., Thermal Plasma Processing With Applications, Inha Univ. Publications, Korea(2004)
  15. Um, M. H., Lee, C. T. and Kumazawa, H., "Thermal Treatment of Titanate Derivatives Synthesis by Host-guest Reaction," J. Mater. Sci. Let., 16, 344-346(1997) https://doi.org/10.1023/A:1018534025435
  16. FactSage, software program, version 5.3.1, GTT-Technologies, Germany
  17. Oh, S. M. and Park, D. W., "Preparation of AlN Fine Powder by Thermal Plasma Processing," Thin Solid Films, 316, 189-194 (1998) https://doi.org/10.1016/S0040-6090(98)00413-1
  18. Holman, J. P., Thermodynamics, Tower Press(1980)
  19. Silbey, R. J. and Albrty, R. A., Pysical Chemistry, John Wiley & Sons, Inc., New York, NY(2001)
  20. Horikoshi, G., Fundamentals of Vacuum Technology, University of Tokyo Press, Tokyo, 11-14(1994)
  21. KiJima, K. and Suzuki, K., "Preparation and Characterization of BaTiO3 by CVD Using ICP Technique," spring conference on ICPIG, July, Netherlands(2005)