• Title/Summary/Keyword: Surface process

Search Result 12,988, Processing Time 0.048 seconds

Assessment of Positioning Accuracy of UAV Photogrammetry based on RTK-GPS (RTK-GPS 무인항공사진측량의 위치결정 정확도 평가)

  • Lee, Jae-One;Sung, Sang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.63-68
    • /
    • 2018
  • The establishment of Ground Control Points (GCPs) in UAV-Photogrammetry is a working process that requires the most time and expenditure. Recently, the rapid developments of navigation sensors and communication technologies have enabled Unmanned Aerial Vehicles (UAVs) to conduct photogrammetric mapping without using GCP because of the availability of new methods such as RTK (Real Time Kinematic) and PPK (Post Processed Kinematic) technology. In this study, an experiment was conducted to evaluate the potential of RTK-UAV mapping with no GCPs compared to that of non RTK-UAV mapping. The positioning accuracy results produced by images obtained simultaneously from the two different types of UAVs were compared and analyzed. One was a RTK-UAV without GCPs and the other was a non RTK-UAV with different numbers of GCPs. The images were taken with a Canon IXUS 127 camera (focal length 4.3mm, pixel size $1.3{\mu}m$) at a flying height of approximately 160m, corresponding to a nominal GSD of approximately 4.7cm. As a result, the RMSE (planimetric/vertical) of positional accuracy according to the number of GCPs by the non-RTK method was 4.8cm/8.2cm with 5 GCPs, 5.4cm/10.3cm with 4 GCPs, and 6.2cm/12.0cm with 3 GCPs. In the case of non RTK-UAV photogrammetry with no GCP, the positioning accuracy was decreased greatly to approximately 112.9 cm and 204.6 cm in the horizontal and vertical coordinates, respectively. On the other hand, in the case of the RTK method with no ground control point, the errors in the planimetric and vertical position coordinates were reduced remarkably to 13.1cm and 15.7cm, respectively, compared to the non-RTK method. Overall, UAV photogrammetry supported by RTK-GPS technology, enabling precise positioning without a control point, is expected to be useful in the field of spatial information in the future.

Improvement of Seedling Stand and Lodging Prevention in Direct Seeded Rice (벼 직파재배(直播栽培) 입묘율향상(立苗率向上)과 도복경감(倒伏輕減))

  • Oh, Yun-Jin;Kim, Chung-Kon
    • Korean Journal of Weed Science
    • /
    • v.12 no.3
    • /
    • pp.200-222
    • /
    • 1992
  • The results of recent researches for improvement of seedling stand in direct seeded rice on the dry paddy in Korea were summarized as the following ; a variety to be cultivated should be chosen the characteristics of high percentage germination under low temperature, shorter period of shoot emergence, and better growth of the mesocotyl and shoots. Meanwhile, there was 40% increase in seedling stand at the treatment of removal of the seed awn under using the drill seeder. After seeding the rice seed covered with soil of 3cm depth was better seedling emergence and also there was the hightest seedling emergence at the 70% of moisture content of the soil. In addition, the application of the Release containing GA 10% enabled to increase the seedling stand and furthermore it was effective under deep seeding depth. The optimum seeding date should be seeded around May 10 when mean air temperature is above 12-13$^{\circ}C$ so that may establish more less 70% in seedling stand. Based on an appropriate seedling stand of 150/$m^2$, the optimum seeding rate was 5kg/10a. It was the best in seeding method using drill seeder and the most desirable recommended seeding method was the drill seeder in terms of seedling stand. In order to improve seedling stand water management was more effective in canal irrigation and in drainage at 6hr after irrigation following by the seeding process. On the other hand, for the increase of seedling stand under flooded condition a variety might have characters being better germination at low concentration of dissolved oxygen and vertically deeper growing of the crown root. Also, seedling stand was able to increase with the seed coating of $CaO_2$in the flooded soil. It was possible to be seeded on the early part of May being mean air temperature of avove 10$^{\circ}C$ and the optimum seeding rate was 5kg/10a. For an effective water management water would be flooded up to 3cm depth for 2-3 weeks after seeding. The rice plant grown under the direct seeded cultivation might be not so much strong in lodging resistance compared to that grown under the transplanting and moreover direct seeded rice cultivation under flooded condition would be more weak growth of the rice plant than that on dry paddy. Meanwhile, the lodging would be affected by the seeding rate, the soil depth after seeding. and seeding method even in the same variety. In particular, roots in the lodging pattern of direct seeded rice cultivation under flooded condition were largely distributed on the soil surface so that resulted easily in the lodging. In general, the lodging resistance would be greater as seeding rate and amount of N fertilizer application are lower and soil depth after seeding is higher. Among the introduction of different seeding method the high ridged drill seeding method on dry paddy soil resulted in the lowest in the lodging index and also it was lower in the drill seeding method than in the scattering seeding method under flooded condition. In case of more than 150 seedlings per $m^2$ there was a severe lodging due to high lodging index at the 3rd and 4th internodes. The effective lodging prevention was able to at the treatment of the Inabenfide at 45 days before heading and the Uniconazol at 15 days before heading which caused the shortage by 10-15cm in culm length. Also, fertilizer management using split application of nitrogen would be contributed the reduction of lodging at the rate of 20-30-20-20-10%(basal-5th leaf stage-7th leaf stage-panicle initiation stage-heading stage) on the dry paddy soil.

  • PDF

Assessing Future Climate Change Impact on Hydrologic Components of Gyeongancheon Watershed (기후변화가 경안천 유역의 수문요소에 미치는 영향 평가)

  • Ahn, So-Ra;Park, Min-Ji;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.33-50
    • /
    • 2009
  • The impact on hydrologic components considering future potential climate, land use change and vegetation cover information was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated (1999 - 2000) and validated (2001 - 2002) for the upstream watershed ($260.4\;km^2$) of Gyeongancheon water level gauging station with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.77 to 0.60 and 0.79 to 0.60, respectively. Two GCMs (MIROC3.2hires, ECHAM5-OM) future weather data of high (A2), middle (A1B) and low (B1) emission scenarios of the IPCC (Intergovernmental Panel on Climate Change) were adopted and the data was corrected by 20C3M (20th Century Climate Coupled Model) and downscaled by Change Factor (CF) method using 30 years (1977 - 2006, baseline period) weather data. Three periods data of 2010 - 2039 (2020s), 2040 - 2069 (2050s), 2070 - 2099 (2080s) were prepared. To reduce the uncertainty of land surface conditions, future land use and vegetation canopy prediction were tried by CA-Markov technique and NOAA NDVI-Temperature relationship respectively. MIROC3.2 hires and ECHAM5-OM showed increase tendency in annual streamflow up to 21.4 % for 2080 A1B and 8.9 % for 2050 A1B scenario respectively. The portion of future predicted ET about precipitation increased up to 3 % in MIROC3.2 hires and 16 % in ECHAM5-OM respectively. The future soil moisture content slightly increased compared to 2002 soil moisture.

Analysis of Set-up Errors during CT-scan, Simulation, and Treatment Process in Breast Cancer Patients (유방암 환자의 모의치료, CT 스캔 및 치료 과정에서 발생되는 준비 오차 분석)

  • Lee, Re-Na
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.169-175
    • /
    • 2005
  • Purpose: Although computed tomography (CT) simulators are commonly used in radiation therapy department, many Institution still use conventional CT for treatments. In this study the setup errors that occur during simulation, CT scan (diagnostic CT scanner), and treatment were evaluated for the twenty one breast cancer patients. Materials and Methods: Errors were determined by calculating the differences in isocenter location, SSD, CLD, and locations of surgical clips implanted during surgery. The anatomic structures on simulation film and DRR image were compared to determine the movement of isocenter between simulation and CT scan. The isocetner point determined from the radio-opaque wires placed on patient's surface during CT scan was moved to new position if there was anatomic mismatch between the two images Results: In 7/21 patients, anatomic structures on DRR Image were different from the simulation Image thus new isocenter points were placed for treatment planning. The standard deviations of the diagnostic CT setup errors relative to the simulator setup in lateral, longitudinal, and anterior-posterior directions were 2.3, 1.6, and 1.6 mm, respectively. The average variation and standard deviation of SSD from AP field were 1.9 mm and 2.3 mm and from tangential fields were 2.8 mm and 3.7 mm. The variation of the CLD for the 21 patients ranged from 0 to 6 mm between simulation and DRR and 0 to 5 mm between simulation and treatment. The group systematic errors analyzed based on clip locations were 1.7 mm in lateral direction, 2.1 mm in AP direction, and 1.7 mm in SI direction. Conclusion: These results represent that there was no significant differences when SSD, CLD, clips' locations and isocenter locations were considered. Therefore, it is concluded that when a diagnostic CT scanner is used to acquire an image, the set-up variation is acceptable compared to using CT simulator for the treatment of breast cancer. However, the patient has to be positioned with care during CT scan in order to reduce the setup error between simulation and CT scan.

Anisotropy of Magnetic Susceptibility (AMS) of the Quaternary Faults, SE Korea: Application to the Determination of Fault Slip Sense and Paleo-stress Field (한반도 남동부 제4기 단층의 대자율이방성(AMS): 단층의 운동감각과 고응력장 해석)

  • Cho, Hyeongseong;Kim, Min-Cheol;Kim, Hyeonjeong;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.75-103
    • /
    • 2014
  • The Quaternary faults are extensively observed along major inherited fault zones (i.e. Yangsan Fault System, Ulsan Fault, Yeonil Tectonic Line, Ocheon Fault System) in SE Korea. Their geometry and kinematics provide a very useful piece of information about the Quaternary crustal deformation and stress field in and around Korean Peninsula. Using magnetic fabrics (AMS), we attempted to determine the slip senses of Jinti, Mohwa, Suseongji2, and Wangsan faults and then interpreted the fabric development process of fault gouge and the characteristics of stress field during the Quaternary. All the magnetic fabrics of the faults, except the Wangsan Fault, consistently indicate a dominant reverse-slip sense with weak strike-slip component. Most of the oblate fabrics are nearly parallel to the fault surface and the anisotropy degrees generally increase in proportion to the oblatenesses. These results suggest that the fabrics of the fault gouges resulted from a progressive deformation due to continuous simple shear during the last reactivation stage as reverse faulting. It is also interpreted that the pre-existing fabrics were overwhelmed and obliterated by the re-activated faulting. Paleostress field calculated from the fault slip data indicates an ENE-WNW compressive stress, which is in accord with those determined from previous fault tectonic analysis, focal mechanism solution, and hydraulic fracturing test in and around Korean Peninsula.

Seasonal Variation of the Quantity and Quality of Seston as Diet Available to Suspension-Feeders in Gosung and Kangjin Bays of Korea (고성만과 강진만에서 현탁물 섭식자에 유용한 입자물질 양과 질의 계절 변동)

  • LEE Pil-Yong;KANG Chang-Keun;CHOI Woo-Jeung;YANG Han-Seob
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.4
    • /
    • pp.340-347
    • /
    • 2001
  • Seasonal variation of the elemental and biochemical composition of the suspended particulate matter (SPM) was investigated in terms of quantity and quality of diets for suspension feeders from July 1999 to August 2000 in two coastal bay systems of Gosung and Kangjin Bays in Korea. No clear patterns in the seasonal variations of SPM concentration were found in these two bay systems. The results indicated that the seasonal variation of SPM could not be considered the variation of food available to suspension-feeders. The simultaneous peaks in chlorophyll a and biochemical components in summer indicated that the quantity of the particulate organic matter primarily depended on phytoplankton productivity. However, no correlation between chlorophyll a and biochemical components [particulate protein (PPr), carbohydrate (PCHO) and lipid] were found, indicating that other processes might also contribute to the particulate organic matter in the period when the phytoplankton biomass was low. High C: Chl a and C:N, and carbohydrate peaks during the autumn to spring period suggested that resuspension of surface sediments was a probable process to supply the particulate organic matter. The food material, represented by summing up the total quantity of three biochemical components, was highest in spring with minor peaks during the period from autumn to the next spring, The food index, calculated as the ratio of food material to total SPM, did not generally exceed $6\%$ with short peaks during the year. Therefore, nutritional quality of SPM in the bays are relatively poor than in other more productive coastal waters in the world. Our results confirm that the measurement of a single chemical variable cannot describe fully the nutritive value of the seston available to suspension-feeders as previously proposed, and the biochemical composition of SPM can provide effective information on its origin and nutritive Quality.

  • PDF

Effect of machining precision of single ceramic restorations on the marginal and internal fit (단일 도재 수복물의 가공 정밀도가 변연 및 내면 적합도에 미치는 영향)

  • Son, Keunbada;Yu, Beom-Young;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.4
    • /
    • pp.313-320
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the machining precision and the marginal and internal fit of single restorations fabricated with three types of lithium disilicate ceramic blocks and to evaluate the correlation. Materials and methods: Single restorations were designed using a CAD software program. The crown designed model file was extracted from the CAD software program. Three types of lithium disilicate blocks (Rosetta; HASS, IPS e.max CAD; Ivoclar vivadent, VITA Suprinity; VITA) were milled using a milling machine. For the fabrication of the crown scanned model file, the intaglio surface of the restoration was digitized using a contact scanner. Then, using the three-dimensional inspection software (Geomagic control X; 3D Systems), the process of the overlap of the crown designed model and the scanned model and 3-dimensional analysis was conducted. In addition, the marginal and internal fit of the crowns was evaluated by a silicone replication method. The difference among three types of single ceramic crown was analyzed using a Kruskal-Wallis H test, and Spearman correlation analysis was performed to analyze the correlation between machining precision and fitness (α=.05). Results: There was a significant difference in the machining precision and the marginal and internal fit according to the type of ceramic block (P<.001). In addition, the machining precision and the marginal and internal fit were positively correlated (P<.001). Conclusion: The marginal fit of crowns fabricated according to the types of ceramic blocks was within the clinically acceptable range (< 120 ㎛), so it can be regarded as appropriate machining precision applicable to all clinical as aspects in terms of the marginal fit.

Changes in midpalatal suture area and adjacent periodontal tissues of individual tooth following rapid palatal expansion in young adult dogs ; Histomorphologic and immunohistochemical study (유성견 급속 구개확장시 정중구개봉합부 및 치아주위 조직 변화에 관한 조직형태학적 및 면역조직화학적 연구)

  • Lee, Ju-Young;Lee, Jin-Woo;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.30 no.3 s.80
    • /
    • pp.317-333
    • /
    • 2000
  • The purpose of this study was to determine the proliferative activity of the osteoblasts and fibroblasts in the midpalatal area and to investigate the adjacent periodontal tissues of individual tooth following rapid expansion of the palate. Ten young adult dogs, aged approximately ten months, were used in the experiment. The experimental design was consisted of 1 week expansion group(Group E1, 3 dogs), 2 week expansion group(Group E2, 3 dogs), 2 week expansion and 2 week retention group(Group E3, 3 dogs), and control group(Group C, 1 dog). For each group, expansion screw was activated one time per day(1/4 turn;$90^{\circ}$) following Hyrax-screw application. The experimental animals in each group were sacrificed at 1, 2 and 4 weeks following palatal expansion. Maxillary tissue blocks were obtained and prepared ior the histomorphologic and immunohistochemical studies. Light mcroscope, polarizing microscope, and soft X-ray apparatus were used in this study, and following results were obtained. 1. In polarizing microscopic study, the expansion groups(E1 & E2) showed blue color representing bone resorption and new bone formation in midpalatal suture area. E3 groups skewed less blue color compared to the E1 and E2 group. But yellow color increased by calcification in the E3 groups. 2. Immunohistochemical study revealed that positive responses of the osteoblasts to PCNA and undifferentiated fibroblasts to EGF in E1 group were somewhat increased. Positive response to PCNA and EGF were increased in fibroblasts and the osteoblasts forming new bone in E2 group. In E3 group, the positive response cell concentrated the periphery of edge of palatal process in both PCNA and EGF. 3. Throughout the expansion period(E1 & E2), light microscopic study showed the edges of the extensive resorption and new palatal processes, indicating bone remodeling within the suture. E3 group exhibited less remodeling of midpalatal suture area. E2 group and E3 group showed cementum formation and resorption at the apex of 3rd premolar and 1st molar E3 group exhibited extensive hyalinized zone on the cervical portion of buccal side of 1st molar. 4. Soft X-ray analysis of E1 group showed hypomineralized defect and microfractures in various parts of the suture areas when compared with control animals. There was no significant difference in the degree of mineralization in the midpalatal suture region between the C and E3 groups. Tooth axis showed tipping of 3rd premolar and 1st molar in the E2 group and E3 group. Based upon these experimental results, it is concluded that the undifferentiated mesenchymal cells always presented in midpalatal suture area following RPE. Differentiated osteoblasts and fibroblasts possess proliferating cellular activity until the 2 week retention period. The posterior teeth are tend to tip buccally as RPE force applied. Retention group exhibited irreversible response with severe hyalinized zone on the buccal surface of the first molar.

  • PDF

Optimal Spatial Scale for Land Use Change Modelling : A Case Study in a Savanna Landscape in Northern Ghana (지표피복변화 연구에서 최적의 공간스케일의 문제 : 가나 북부지역의 사바나 지역을 사례로)

  • Nick van de Giesen;Paul L. G. Vlek;Park Soo Jin
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.2 s.107
    • /
    • pp.221-241
    • /
    • 2005
  • Land Use and Land Cover Changes (LUCC) occur over a wide range of space and time scales, and involve complex natural, socio-economic, and institutional processes. Therefore, modelling and predicting LUCC demands an understanding of how various measured properties behave when considered at different scales. Understanding spatial and temporal variability of driving forces and constraints on LUCC is central to understanding the scaling issues. This paper aims to 1) assess the heterogeneity of land cover change processes over the landscape in northern Ghana, where intensification of agricultural activities has been the dominant land cover change process during the past 15 years, 2) characterise dominant land cover change mechanisms for various spatial scales, and 3) identify the optimal spatial scale for LUCC modelling in a savanna landscape. A multivariate statistical method was first applied to identify land cover change intensity (LCCI), using four time-sequenced NDVI images derived from LANDSAT scenes. Three proxy land use change predictors: distance from roads, distance from surface water bodies, and a terrain characterisation index, were regressed against the LCCI using a multi-scale hierarchical adaptive model to identify scale dependency and spatial heterogeneity of LUCC processes. High spatial associations between the LCCI and land use change predictors were mostly limited to moving windows smaller than 10$\times$10km. With increasing window size, LUCC processes within the window tend to be too diverse to establish clear trends, because changes in one part of the window are compensated elsewhere. This results in a reduced correlation between LCCI and land use change predictors at a coarser spatial extent. The spatial coverage of 5-l0km is incidentally equivalent to a village or community area in the study region. In order to reduce spatial variability of land use change processes for regional or national level LUCC modelling, we suggest that the village level is the optimal spatial investigation unit in this savanna landscape.

PCA­based Waveform Classification of Rabbit Retinal Ganglion Cell Activity (주성분분석을 이용한 토끼 망막 신경절세포의 활동전위 파형 분류)

  • 진계환;조현숙;이태수;구용숙
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.211-217
    • /
    • 2003
  • The Principal component analysis (PCA) is a well-known data analysis method that is useful in linear feature extraction and data compression. The PCA is a linear transformation that applies an orthogonal rotation to the original data, so as to maximize the retained variance. PCA is a classical technique for obtaining an optimal overall mapping of linearly dependent patterns of correlation between variables (e.g. neurons). PCA provides, in the mean-squared error sense, an optimal linear mapping of the signals which are spread across a group of variables. These signals are concentrated into the first few components, while the noise, i.e. variance which is uncorrelated across variables, is sequestered in the remaining components. PCA has been used extensively to resolve temporal patterns in neurophysiological recordings. Because the retinal signal is stochastic process, PCA can be used to identify the retinal spikes. With excised rabbit eye, retina was isolated. A piece of retina was attached with the ganglion cell side to the surface of the microelectrode array (MEA). The MEA consisted of glass plate with 60 substrate integrated and insulated golden connection lanes terminating in an 8${\times}$8 array (spacing 200 $\mu$m, electrode diameter 30 $\mu$m) in the center of the plate. The MEA 60 system was used for the recording of retinal ganglion cell activity. The action potentials of each channel were sorted by off­line analysis tool. Spikes were detected with a threshold criterion and sorted according to their principal component composition. The first (PC1) and second principal component values (PC2) were calculated using all the waveforms of the each channel and all n time points in the waveform, where several clusters could be separated clearly in two dimension. We verified that PCA-based waveform detection was effective as an initial approach for spike sorting method.

  • PDF