• Title/Summary/Keyword: Surface potential

Search Result 4,338, Processing Time 0.048 seconds

Potential Distribution near Concrete Pole According to the position of Ground Rod (접지봉 설치에 따른 전주 주변의 전위분포)

  • Lee, B.H.;Jung, H.U.;Choi, C.H.;Cho, S.C.;Baek, Y.H.;Lee, K.S.;Ahn, C.H.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.342-346
    • /
    • 2006
  • This paper describes ground surface potential rises and touch voltage. The more soil resistivity of upper layer is lower, the more ground surface potential rise is increased. Ground surface potential rise is increased as the buried depth of ground rod in lowered. Ground surface potential rises were measured in the test site and compared with results by CDEGS program. Touch voltages according to the separation distance of ground rod were measured in four directions. Touch voltages were remarkably changed by separation distance and contact position.

  • PDF

Interference Coefficient of X axis for Electrodes using Variation of Plural Earth Electrodes (복수접지극의 변화에 따른 전극의 X축 간섭계수)

  • Kim Sung Sam;Kim Ju Chan;Song Won Pyo;Koh Hee Seog
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.449-451
    • /
    • 2004
  • In the building, there are a lot of electricity, electrodes, and communication equipment. Many of those equipment needs to earthing. Naturally, the earth electrodes are constructed in the site of a building. In such a situation, when electric current flows into a certain earthing system the potential of other earthing systems rises. That is, the potential interference will take place between the earth electrodes. The conventional study has been considered by only the relation of the distance between the earth electrodes using the potential distribution formula of earth surface. However, it is necessary to inquire strictly, taking the surface potential of electrodes by electrode form into consideration. In this paper, basic formula is deduced on the basis of both electrodes surface potential of earth electrode as a source of the potential interference and earth electrode which receives the potential interference.

  • PDF

Electrochemical modification of the porosity and zeta potential of montmorillonitic soft rock

  • Wang, Dong;Kang, Tianhe;Han, Wenmei;Liu, Zhiping;Chai, Zhaoyun
    • Geomechanics and Engineering
    • /
    • v.2 no.3
    • /
    • pp.191-202
    • /
    • 2010
  • The porosity (including the specific surface area and pore volume-diameter distribution) of montmorillonitic soft rock (MSR) was studied experimentally with an electrochemical treatment, based on which the change in porosity was further analyzed from the perspective of its electrokinetic potential (${\zeta}$ potential) and the isoelectric point of the electric double layer on the surface of the soft rock particles. The variation between the ${\zeta}$ potential and porosity was summarized, and used to demonstrate that the properties of softening, degradation in water, swelling, and disintegration of MSR can be modified by electrochemical treatment. The following conclusions were drawn. The specific surface area and total pore volume decreased, whereas the average pore diameter increased after electrochemical modification. The reduction in the specific surface area indicates a reduction in the dispersibility and swelling-shrinking of the clay minerals. After modification, the ${\zeta}$ potential of the soft rock was positive in the anodic zone, there was no isoelectric point, and the rock had lost its properties of softening, degradation in water, swelling, and disintegration. The ${\zeta}$ potential increased in the intermediate and cathodic zones, the isoelectric point was reduced or unchanged, and the rock properties are reduced. When the ${\zeta}$ potential is increased, the specific surface area and the total pore volume were reduced according to the negative exponent law, and the average pore diameter increased according to the exponent law.

PROPERTIES OF PIB-CU FILMS ACCELERATION VOLTAGE AND IONIZATION POTENTIAL

  • Kim, K.H.;Jang, H.G.;Han, S.;Choi, S.C.;Choi, D.J.;Jung, H.J.;Koh, S.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.570-576
    • /
    • 1996
  • Cu films for future ULSI metallization were prepared by partially ionized beam (PIB) deposition and characterized in terms of preferred orientation, grain size, roughness and resistivity. PIB-Cu films were prepared on Si (100) at pressure of $8 \times 10^{-7}$~$1 \times 10^{-6}$ Torr. Effects of acceleration voltage and ionization potential on the properties of PIB-Cu films have been investigated. As the acceleration voltage increased at constant ionization potential of 400 V, the degree of preferred orientation and surface smoothness of the Cu film increased. At the ionization potential of 450 V, the degree of preferred orientation at the acceleration voltage higher than 2 kV decreased and surface roughness increased with acceleration voltage. Grain size of Cu films increased to 1100 $\AA$ initially up to applied acceleration voltage of 1 kV, above which a little increase occurred with the acceleration voltage. There was no indication of impurities such as C, O in all sample. Resistivity of Cu film had the same trends as the surface roughness with acceleration voltage and ionization potential. The increase of electrical resistivity of PIB-Cu films was explained in terms of grain size and surface roughness

  • PDF

Studies on the Adsorption Modeling of Cationic Heavy Metals(Pb, Cd) by the Surface Complexation Model (Surface Complexation Model을 이용한 양이온 중금속(Pb, Cd) 흡착반응의 모델화 연구)

  • 신용일;박상원
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.211-219
    • /
    • 1999
  • Surface complexation models(SCMs) have been performed to predict metal ion adsorption behavior onto the mineral surface. Application of SCMs, however, requires a self-consistent approach to determine model parameter values. In this paper, in order to determine the metal ion adsorption parameters for the triple layer model(TLM) version of the SCM, we used the zeta potential data for Zeolite and Kaolinite, and the metal ion adsorption data for Pb(II) and Cd(II). Fitting parameters determined for the modeling were as follows ; total site concentration, site density, specific surface area, surface acidity constants, etc. Zeta potential as a new approach other than the acidic-alkalimetric titration method was adopted for simulation of adsorption phenomena. Some fitting parameters were determined by the trial and error method. Modeling approach was successful in quantitatively simulating adsorption behavior under various geochemical conditions.

  • PDF

Reduction of the the Ground Surface Potential Gradients by Installing Auxiliary Grounding Grids (보조접지그리드의 시설에 의한 대지표면전위경도의 저감)

  • 이승칠;엄주홍;이복희;김효진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.121-129
    • /
    • 2002
  • The present paper describes a technique for installing an effective grounding grids, the major objective is forced on the experimental evaluation of the performance and characteristics with the arrangement and installation method for grounding grids consisting of the means to protect electric shock, electronics and computerized facilities against lightning, switching and ground fault surges. The study is oriented on two major areas: (1) the analysis of the ground surface potential gradient with the arrangement of grounding grids, (2) the control of the dangerous ground surface potential rise. The experiments wee carried out with the impulse currents as a function of the installation method or arrangement of grounding grids. An installation method of the inclined auxiliary grounding grid was proposed to overcome the drawbacks of equally spared grounding grids, i.e. an appropriate design concept far the installation of grounding grids was found out, It has been shown that the installation of the intwined auxiliary grounding grid can also result in a mere than 50% decrease in the maximum potential gradient on the ground surface and enhance the level of safety for persons and electronic equipments..

Nano-mechanics 분석을 기반으로 Sol-gel PZT 박막의 Plasma에 의한 물리적 특성 변화 연구

  • Kim, Su-In;Kim, Seong-Jun;Gwon, Gu-Eun;Kim, Hyeon-Seok;Eom, Eun-Sang;Park, Jun-Seong;Lee, Jeong-Hyeon;Lee, Chang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.216.1-216.1
    • /
    • 2013
  • PZT 박막은 강유전 특성과 압전소자 특성을 나타내는 물질로 DRAM (dynamic random acess memory)과 FRAM (ferroelectric RAM) 등의 기억소자용 capacitor와 MEMS (micro electro mechanical system) 소자의 압전 물질로 사용하기 위한 연구가 진행중에 있다. 하지만 이러한 연구에서는 PZT 박막의 전기적 특성 향상을 주목적으로 연구가 진행되어 왔다. 특히, 박막 공정중 발생하는 plasma에 의한 PZT의 전기적 특성 변화가 박막 표면의 물리적 변화에 기인할 것으로 추정하고 있지만 이에 대한 구체적인 연구는 미비하다. 이 연구에서는 plasma에 의한 PZT 박막 표면의 물리적 특성 변화를 연구하기 위하여 PZT 박막을 sol-gel을 이용하여 Si 기판위에 약 100 nm의 두께로 증착하였으며, 이후 최대 300 W의 Ar plasma로 plasma power을 증가시켜 각각 10분간 plasma처리를 실시하였다. PZT 박막 표면의 nano-mechanics 특성을 분석하기 위하여 Nano-indenter와 Kelvin Probe Force Microscopy (KPFM)을 사용하여 surface hardness, surface morphology를 확인하였고 특히, surface potential 분석을 통하여 PZT 박막 표면의 plasma에 의한 박막 극 표면의 전기적 특성 변화를 연구하였다. 이 연구로 plasma에 의한 PZT 박막은 표면으로부터 최대 43 nm 깊이에서의 hardness는 최대 5.1 GPa에서 최소 4.3 GPa의 분포로 plasma power 변화에 의한 특성은 측정 불가능하였다. 이는 plasma에 의한 영향이 시료 극 표면에 국한되어 나타나기 때문으로 추정되며 이를 보완하기 위하여 surface potential을 분석하였다. 결과에 의하면 plasma power가 0 W에서 300 W로 증가함에 따라 potential이 30 mV에서 -20 mV로 감소하였으나 potential의 분산은 100 W에서 최대인 17 mV로 측정되었으며, 이때 RMS roughness역시 가장 높은 20.145 nm로 측정되었다. 특히, 100 W에서 potential에서는 물결 모양과 같은 일정한 패턴의 potential 무늬가 확인되었다.

  • PDF

A Unified Analytical One-Dimensional Surface Potential Model for Partially Depleted (PD) and Fully Depleted (FD) SOI MOSFETs

  • Pandey, Rahul;Dutta, Aloke K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.262-271
    • /
    • 2011
  • In this work, we present a unified analytical surface potential model, valid for both PD and FD SOI MOSFETs. Our model is based on a simplified one dimensional and purely analytical approach, and builds upon an existing model, proposed by Yu et al. [4], which is one of the most recent compact analytical surface potential models for SOI MOSFETs available in the literature, to improve its accuracy and remove its inconsistencies, thereby adding to its robustness. The model given by Yu et al. [4] fails entirely in modeling the variation of the front surface potential with respect to the changes in the substrate voltage, which has been corrected in our modified model. Also, [4] produces self-inconsistent results due to misinterpretation of the operating mode of an SOI device. The source of this error has been traced in our work and a criterion has been postulated so as to avoid any such error in future. Additionally, a completely new expression relating the front and back surface potentials of an FD SOI film has been proposed in our model, which unlike other models in the literature, takes into account for the first time in analytical one dimensional modeling of SOI MOSFETs, the contribution of the increasing inversion charge concentration in the silicon film, with increasing gate voltage, in the strong inversion region. With this refinement, the maximum percent error of our model in the prediction of the back surface potential of the SOI film amounts to only 3.8% as compared to an error of about 10% produced by the model of Yu et al. [4], both with respect to MEDICI simulation results.

In silico evaluation of the acute occlusion effect of coronary artery on cardiac electrophysiology and the body surface potential map

  • Ryu, Ah-Jin;Lee, Kyung Eun;Kwon, Soon-Sung;Shin, Eun-Seok;Shim, Eun Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.71-79
    • /
    • 2019
  • Body surface potential map, an electric potential distribution on the body torso surface, enables us to infer the electrical activities of the heart. Therefore, observing electric potential projected to the torso surface can be highly useful for diagnosing heart diseases such as coronary occlusion. The BSPM for the heart of a patient show a higher level of sensitivity than 12-lead ECG. Relevant research has been mostly based on clinical statistics obtained from patients, and, therefore, a simulation for a variety of pathological phenomena of the heart is required. In this study, by using computer simulation, a body surface potential map was implemented according to various occlusion locations (distal, mid, proximal occlusion) in the left anterior descending coronary artery. Electrophysiological characteristics of the body surface during the ST segment period were observed and analyzed based on an ST isointegral map. We developed an integrated system that takes into account the cellular to organ levels, and performed simulation regarding the electrophysiological phenomena of the heart that occur during the first 5 minutes (stage 1) and 10 minutes (stage 2) after commencement of coronary occlusion. Subsequently, we calculated the bipolar angle and amplitude of the ST isointegral map, and observed the correlation between the relevant characteristics and the location of coronary occlusion. In the result, in the ventricle model during the stage 1, a wider area of ischemia led to counterclockwise rotation of the bipolar angle; and, during the stage 2, the amplitude increased when the ischemia area exceeded a certain size.

A Study of the Ferroelectric Properties of PbZr0.4Ti0.6O3 (PZT) Grains Using Kelvin Force Microscopy Analysis

  • Heo, Jin-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.275-278
    • /
    • 2010
  • We have examined the Ferroelectric properties of $PbZr_{0.4}Ti_{0.6}O_3$ (PZT) grains by monitoring the surface potential through the utilization of Kelvin force microscopy. Hysteretic and time dependent behaviors of small and large grains were compared with each other. The smaller grain yields had smaller values of surface potential. However, the normalized voltage versus surface potential behavior indicates that the smaller grains became saturated earlier with respect to the writing voltages than did the larger grains. On the other hand, the surface potential hysteresis loop obtained from the smaller grains showed a similar shape to what might be obtained from a Zr rich PZT film. In contrast the hysteresis loop of the larger grain looks like that obtained from a Ti-rich film. In addition, the time dependent behaviors of the smaller grains also revealed a better response than the response of larger grains. The overall ferroelectric properties of the smaller grains seem better than corresponding properties for larger grains. The Ti/Zr ratio of the PZT film which was examined in this study was 60/40.