DOI QR코드

DOI QR Code

A Study of the Ferroelectric Properties of PbZr0.4Ti0.6O3 (PZT) Grains Using Kelvin Force Microscopy Analysis

  • Received : 2010.10.16
  • Accepted : 2010.11.29
  • Published : 2010.12.25

Abstract

We have examined the Ferroelectric properties of $PbZr_{0.4}Ti_{0.6}O_3$ (PZT) grains by monitoring the surface potential through the utilization of Kelvin force microscopy. Hysteretic and time dependent behaviors of small and large grains were compared with each other. The smaller grain yields had smaller values of surface potential. However, the normalized voltage versus surface potential behavior indicates that the smaller grains became saturated earlier with respect to the writing voltages than did the larger grains. On the other hand, the surface potential hysteresis loop obtained from the smaller grains showed a similar shape to what might be obtained from a Zr rich PZT film. In contrast the hysteresis loop of the larger grain looks like that obtained from a Ti-rich film. In addition, the time dependent behaviors of the smaller grains also revealed a better response than the response of larger grains. The overall ferroelectric properties of the smaller grains seem better than corresponding properties for larger grains. The Ti/Zr ratio of the PZT film which was examined in this study was 60/40.

Keywords

References

  1. D. M. Jang, J. H. Heo, I. S. Yi, and I. S. Chung, Jpn. J. Appl. Phys. 41, 6739 (2002) [DOI: 10.1143/JJAP.41.6739].
  2. I. S. Chung, D. M. Jang, J. H. Heo, J. Lee, M. Yastake, and I. S. Yi,Jpn. J. Appl. Phys. 41, 6743 (2002) [DOI: 10.1143/JJAP.41.6743].
  3. R. Luthi, H. Haefke, K. P. Meyer, E. Meyer, L. Howald, and H. J. Guntherodt, J. Appl. Phys. 74, 7461 (1993) [DOI: 10.1063/1.354969].
  4. G. Zavala, J. H. Fendler, and S. Trolier-McKinstry, J. Appl. Phys. 81, 7480 (1997) [DOI: 10.1063/1.365350].
  5. B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature 401, 682 (1999) [DOI: 10.1038/44352].
  6. C. S. Ganpule, A. Stanishevsky, Q. Su, S. Aggaarwal, J. Melngailis, E. Williams, and R. Ramesh, Appl. Phys. Lett. 75, 409 (1999) [DOI: 10.1063/1.124391].
  7. H. O. Jacobs, H. F. Knapp, S. Muller, and A. Stemmer, Ultramicroscopy 69, 39 (1997) [DOI: 10.1016/S0304-3991(97)00027-2].
  8. A. Gruverman, A. Kholkin, A. Kingon, and H. Tokumoto, Appl. Phys. Lett. 78, 2751 (2001) [DOI: 10.1063/1.1366644].
  9. D. J. Wouters and H. E. Maes, Microelectron. Reliab. 36, 1763 (1996) [DOI: 10.1016/0026-2714(96)00193-X].
  10. A. Gruverman, A. Pignolet, K. M. Satyalakshmi, M. Alexe, N. D. Zakharov, and D. Hesse, Appl. Phys. Lett. 76, 106 (2000) [DOI: 10.1063/1.125671].
  11. V. V. Shvartsman, A. Yu. Emelyanov, A. L. Kholkin, and A. Safari, Appl. Phys. Lett. 81, 117 (2002) [DOI: 10.1063/1.1490150].

Cited by

  1. Surface Characterisation of a Ferroelectric Single Crystal by Kelvin Probe Force Microscopy vol.03, pp.03, 2013, https://doi.org/10.4236/jsemat.2013.33026
  2. Piezoelectric and ferroelectric properties of lead-free (1-x)(Na 1−y K y )(Nb 1−z Sb z )O 3 -xBaTiO 3 solid solution vol.512, 2017, https://doi.org/10.1016/j.physb.2017.02.024