• Title/Summary/Keyword: Surface pavement thickness

Search Result 38, Processing Time 0.019 seconds

Pobabilistic Design of Asphalt Pavement Surface Courae (아스팔트 鋪裝道路의 確率論的 表層設計)

  • Kim, Gwang-U;Yeon, Gyu-Seok
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.66-77
    • /
    • 1992
  • A prototype probabilistic approach to thickness design for asphalt pavement surface course was developed using first-order second moment probability model. The tensile strain (load effect) developing at the bottom of surface layer due to the wheel load and the critical strain (resistance) of asphalt concrete were used as random variables for pavement reliability analysis. Based on the parameters for load effect and resistance data collected from reference and field, simulated data were generated by Monte Carlo method for reliability evaluation of the pavement for a typical rural highway. Thickness of pavement surface course was defined in terms of target reliability of the pavement, growth factor of traffic, design life of pavement and resistance of the asphalt concrete to be placed on the pavement. According to these rationales, prototype thickness design chrats were sugested through example studies. From these, similar design charts can be developed for many pavements if appropriate data and target reliability are determined.

  • PDF

A Study on Field Applicability Evaluation of the Hydrophobic - Low Viscosity Surface Treatment Material for Pavement Preventive Maintenance (소수성 특성을 이용한 저점도 AP 표면처리재의 현장 적용성 연구)

  • Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • PURPOSES : Surface treatment material for pavement preventive maintenance should be inspected field applicability. This study(Part II) aimed to checkup coating characteristics and performance analysis using lab and field tests. The hydrophobic - low viscosity filling material for pavement preventive maintenance is presented in Part I, which is a series of companion study. METHODS : Relative comparison between general asphalt mixtures and surface treatment asphalt mixtures are analyzed and measured for the field application such as indirect tensile strength ratio(TSR), abrasion resistance, crack propagation resistance, temperature resistance, coating thickness, permeability resistance and skid resistance in terms of british pendulum number(BPN). RESULTS : It is found that TSR, crack propagation resistance and permeability resistance is increased as against uncoated asphalt specimen. Abrasion resistance and temperature resistance is secured from the initial coating thickness point of view, which is about 0.2~0.3mm. Skid resistance on the surface treatment pavement is satisfied with the BPN criteria of national highway because of exposed aggregate and crack sill induced pavement deterioration and damage cracks. CONCLUSIONS : The hydrophobic - low viscosity surface treatment material for pavement preventive maintenance is validated on field applicability evaluation based on quantitative analysis of coating thickness and performance analysis using lab and field tests.

Evaluation of The Effects of Fiber Grid Reinforcement on the Thickness Reduction of Asphalt Pavement (섬유 그리드를 이용한 아스팔트 포장 단면 감소 효과 분석)

  • Ham, Sang Min;Kim, Booil
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.43-48
    • /
    • 2017
  • PURPOSES : The purpose of this study is to verify the effects of fiber grid reinforcement on the thickness reduction of asphalt pavement. Test sections were constructed on the national highway to evaluate the structural capacity of asphalt pavement with the reinforced fiber grid and normal asphalt pavement. METHODS : Falling Weight Deflectometer (FWD) tests were performed to measure the structural capacity of test sections. The loads of the FWD test are 4.1 ton, 8.0 ton, 10.0 ton, and loaded twice, respectively. The test sections consist of a reference asphalt pavement section, an asphalt pavement section reduced with a 5-cm base layer thickness, and a fiber grid reinforced asphalt pavement section reduced with a 5-cm base layer thickness. In addition, strain data was collected using strain gauges installed in the test sections. RESULTS : The results of the FWD tests showed that the deflections of the pavement section reinforced with the fiber grid was reduced by about 14% compared with that of the reference asphalt pavement section. The strain at the bottom of the asphalt surface layer of the pavement section reduced to a 5-cm base thickness and reinforced with a fiber grid was similar to that at the bottom of the asphalt layer of the reference asphalt pavement. CONCLUSIONS : The results of the FWD and strain tests showed the possibility of the pavement thickness reduction by reinforcement with a fiber grid.

Determination of the Layer Thickness for Long-Life Asphalt Pavement (장수명 아스팔트포장 단면설계에 관한 연구)

  • Park, Hee-Mun;Kim, Je-Won;Hwang, Sung-Do;Lee, Hyun-Jong
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.23-31
    • /
    • 2005
  • This study is a part of research for developing the technologies of long life pavements having more than 40-year design life. The objective of this study is to develop the simplified design procedure for determining the layer thickness and modulus of the long life pavement. A synthetic database was established using the finite element program of a pavement structure with various combinations of layer thickness and modulus. The synthetic database includes the structural and material information, surface deflection, and critical pavement responses. Using the developed synthetic database, this paper suggests the minimum layer thickness and modulus for long life pavements bared on the limited strain level concept. Results demonstrate that the pavement greater than 410mm of total AC layer thickness is considered as the long life pavements regardless of the material characteristics and thickness in each layer. To become a long life pavement, a total thickness of AC layer should be greater than 250mm. The design procedure for determining the layer thickness and modulus of the pavements with AC layer thickness ranging from 250 to 410mm is also presented in this paper.

  • PDF

Characterization of Asphalt Pavement Distress Using Korean Pavement Research Program (한국형포장설계법을 이용한 아스팔트포장의 파손특성)

  • Lee, Kwan-Ho;Lee, Kyung-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.487-493
    • /
    • 2017
  • The main purpose of this study is to evaluate the main parameters involved in the asphalt pavement distresses, including IRI (International Rough Index), fatigue, and permanent deformation. The main parameters are the region (Seoul and Busan), traffic level, asphalt binder, maximum aggregate of surface course, thickness of the surface course and base. A total of 64 case studies were carried out under the auspices of the KPRP (Korea Pavement Research Program). From the analysis of the KPRP test results, the key factors for the asphalt pavement distress were determined. Considering the effect of one variable in the basic condition, asphalt binder was the major factor having an effect on the distresses for an AADT (Annual Average Daily Traffic) of 5000 in the Seoul area. Among the remaining factors, the results were found to be in the order of the base layer thickness (A), surface layer thickness (B), and aggregate particle size thickness (D). The same results were obtained for an AADT of 10000. In the case of Busan with an AADT of 5000, the same result was obtained as for Seoul. Among the remaining factors, the results were in the order of the base layer thickness (A), aggregate particle thickness (D), and surface layer thickness (B). Even though there was a slight difference in the effect of the traffic level and region, asphalt binder was the parameter having the greatest effect on the asphalt pavement distress. In the case where the effect of multiple parameters was analyzed, the combination of the asphalt binder and base thickness showed a relatively strong effect.

Study of Deterioration Phenomenon and Causes in Pavement of Ramp Area (도로 램프구간에 대한 파손형태 및 원인에 관한 연구)

  • Hwang, Sung-Do;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.85-90
    • /
    • 2016
  • PURPOSES : The objective of this paper is to understand the deterioration phenomenon and causes in the pavement of a ramp area. METHODS : Ramp areas need to be sloped because of the centrifugal force, which depends on the vehicle speed and grade of the ramp area. As a result, vertical and horizontal forces are applied on the pavement surface of the ramp area. Furthermore, the horizontal force depends on the vehicle speed and grade of the ramp area. In order to analyze the pavement structure of a ramp area, a multi-layered elastic analysis program was used to evaluate the weakest link of fatigue cracking deterioration, according to the simultaneously applied vertical and horizontal forces. RESULTS : From case studies related to the bonding conditions between the surface and base layer in a ramp area, it was found that the partially bonded cases resulted in a critical potential of fatigue cracking deterioration, in a comparison of 50%, 70%, and fully bonded cases. CONCLUSIONS : According to the results of the case studies, the pavement structure system should be reinforced by upgrading the material or increasing the thickness compared to the general pavement areas, in order to provide a performance life similar to the mainline pavements in the ramp areas.

A Numerical Analysis on Stability Analysis of Cavity Ground considering Pavement Thickness and Traffic Load (포장층 두께와 교통하중 크기를 고려한 공동 발생 지반의 안정성 분석에 관한 수치해석)

  • You, Seung-Kyong;Ahn, Heechul;Kim, Young-Ho;Han, Jung-Geun;Hong, Gigwon;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.287-297
    • /
    • 2019
  • In this study, a series of finite element numerical analyzes were performed considering the pavement thickness and traffic load for the purpose of stability analysis on the cavity ground. In order to verify the validity of this numerical method, the previous numerical analysis was used to simulate the mechanical behavior of cavity ground, and the results were compared and analyzed. Also, from the numerical results, it was possible to confirm the dynamic behavior of the ground by confirming the change of ground void ratio, surface settlement, and shear stress, and using the relationship between stress ratio, non-destructive depth and surface settlement, the safety of the was analyzed. As a result, as the pavement thickness decreased and the traffic load increased, the non-destructive depth and the overall stability of the ground decreased with the increase of surface settlement.

Development of Pavement Condition Index for Asphalt Pavement (아스팔트포장 평가지수의 개발)

  • Jin, Myung-Sub;Song, Young-Woo
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.55-63
    • /
    • 2004
  • It is necessary to use the pavement condition index which evaluates the conditions of pavement objectively and is utilized for effective pavement management. PSI, MCI, UPCI are currently used indices, however, they do not play a role as general indices due to their unfair considerations only for users or managers. Thus, this paper pointed out the problems of current indices and developed a new pavement condition index. Also, a sensitivity analysis on the material properties was conducted for the proposed index using the real data obtained from fields. The material properties affected the index in order of surface thickness, asphalt viscosity and asphalt content.

  • PDF

A study on voided-area analysis and remaining life prediction using the finite element method for pavement structures (유한요소기법을 이용한 동공해석과 공용수명 예측기법 연구)

  • Lee, Junkyu;Lee, Sangyum;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.131-136
    • /
    • 2016
  • OBJECTIVES : The objective of this research is to determine the integrity of pavement structures for areas where voids exist. Furthermore, we conducted the study of voided-area analysis and remaining life prediction for pavement structures using finite element method. METHODS : To determine the remaining life of the existing voided areas under asphalt concrete pavements, field and falling weight deflectometer (FWD) tests were conducted. Comparison methods were used to have better accuracy in the finite element method (FEM) analysis compared to the measured surface displacements due to the loaded trucks. In addition, the modeled FEM used in this study was compared with well-known software programs. RESULTS : The results show that a good agreement on the analyzed and measured displacements can be obtained through comparisons of the surface displacement due to loaded trucks. Furthermore, the modeled FEM program was compared with the available pavement-structure software programs, resulting in the same values of tensile strains in terms of the thickness of asphalt concrete layers. CONCLUSIONS : The study, which is related to voided-area analysis and remaining life prediction using FEM for pavement structures, was successfully conducted based on the comparison between our methods and the sinkhole grade used in Japan.

Field Application of Recycled Concrete for a Low Volume Road Pavement (재생 콘크리트를 이용한 소도로 시험포장)

  • 김광우;류능환;박용철;최영규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.388-393
    • /
    • 1996
  • This study evaluated characteristics and performance of recycled concrete as a pavement which was constructed on a low volume road. The recycled concrete was prepared by replacing a half of coarse aggregate with recycled aggregate. Natural sand from a source was used as fine aggregate together with admixtures such as plasticizer and fly ash (0.8% and 5% by wt. of cement, respectively). The length, thickness and width of the pavement were 100mm, 20cm and 3m, respectively. From construction experience, it was found that workability and finishability of the recycled concrete mixture were relatively poor, but strengths were satisfactory. Flexural strength, compressive strength and elastic modulus at 28 days were approximately 45Kg/$\textrm{cm}^2$, 250Kg/$\textrm{cm}^2$, and 240,000 Kg/$\textrm{cm}^2$, respectively. The pavement could be constructed by hand without much difficulty. The surface was finished smoothy by wet fabric and only minor cracks were found on the surface.

  • PDF