• Title/Summary/Keyword: Surface oxide

Search Result 3,747, Processing Time 0.031 seconds

Surface Hardness Measurement of Anodic Oxide Films on AA2024 based an Ink-Impregnation Method

  • Moon, Sungmo;Rha, Jong-joo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.80-86
    • /
    • 2020
  • This paper is concerned with type of imperfections present within the anodic oxide films on AA2024 and surface hardness of the anodic film measured after ink-impregnation. The anodic oxide films were formed for 25 min at 40 mA/㎠ and 15±0.5℃ and 300 rpm of magnet stirring rate in 20% sulfuric acid solution. The ink-impregnation allows clear observations of not only the imperfections within the anodic oxide films but also an indentation mark on the oxide film surface made by a pyramidal-diamond penetrator for the hardness measurement. There were observed four different regions in the anodic oxide films on AA2024 and the surface hardness of the anodic oxide films appeared to be crucially dependent on the type of defects, showing 60~100 Hv on the oxide surface region I with large size black defect, 100~140 Hv on the oxide surface region II with large size grey defect, 140~170 Hv on the oxide surface region III with mall size black and/or grey defects and 170~190 Hv on the oxide surface region IV without defects. The pyramidal indentation marks were observed to be distorted in the regions with a large size black and grey defects, while no distortion of the indentation mark was observed in the regions with small size defects and without visible defects.

Novel Methods for Measuring the Surface Hardness of Anodic Oxide Films on Aluminum Alloy (알루미늄 합금 양극산화피막의 표면경도 측정법)

  • Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.1
    • /
    • pp.36-42
    • /
    • 2020
  • In this study, two novel methods to measure the surface hardness of anodic oxide films on aluminum alloys are reported. The first method is to impregnate oil-based ink into pores in the anodic oxide film and then to clean the ink on the surface using ethanol, resulting in an impregnation of inks only inside of the pores in anodic oxide film. The second method is to coat the anodic oxide film surface with thin Au layer less than 0.1 ?. Both the ink-impregnating method and Au-coating method provided clear indentation marks on the anodic oxide film surface when it was indented using a pyramidal-diamond penetrator. Thus, Vickers hardness of anodic oxide films on aluminium alloy could be measured successfully and precisely from the anodic film surface. In addition, advantages and disadvantages of the ink-impregnating method and Au-coating method for the measurement of surface hardness of anodic oxide films are discussed.

Formation of Anodic Oxide Films on As-Cast and Machined Surfaces of Al-Si-Cu Casting Alloy (주조용 Al-Si-Cu 알루미늄 합금의 기계가공 및 주조된 표면에서의 양극산화피막 형성)

  • Moon, Sung-Mo;Nam, Yoon-Kyung;Yang, Cheol-Nam;Jeong, Yong-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.260-266
    • /
    • 2009
  • The anodic oxidation behaviour of a cast component of AC2A Al alloy with machined surface and ascast surface was investigated in sulfuric acid solution. The anodized specimen showed relatively uniform and thick anodic oxide films on the as-cast surface, while non-uniform and very thin oxide films were formed on the machined surface. Non-anodized as-cast surface was observed to be covered with thick oxide scales and showed a number of second-phase particles containing Si, while non-anodized machined surface showed no oxide scales and relatively very small number of Si particles. Thus, the very limited growth of anodic oxide films on the as-cast surface was attributed to the presence of thick oxide scales and Si-containing second-phase particles on its surface.

Investigation on the polystyrene surface coating method of graphene oxide (산화그래핀(GO)의 플라스틱(PS) 표면 코팅방법에 대한 연구)

  • Park, Jaebum;Lee, Jihoon;Huh, Jeung Soo;Park, Danbi;Lim, Jeong Ok
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.77-83
    • /
    • 2021
  • In this study, we investigated various coating methods of graphene oxide on the surface of a petri dish made of polystyrene and analyzed the physical and chemical properties of the coated surface. For coating, spinning, spraying and pressing methods were attempted. The coated surface was characterized by SEM, Raman Spectroscopy, AFM, FT-IR, UV-Vis Spectroscopy and Contact Angle measurement. By spin coating and spray coating, well distributed graphene oxide in the form of multiple islands on the plastic surface with an average size of 5 to 20㎛ are observed by SEM, and high binding energy between graphene oxide and plastic surface is measured by AFM. In case of hand press coating, graphene oxide of 10㎛ or more was observed, and low surface energy was measured. By FT-IR and Raman Spectroscopy analysis, surface coating of graphene oxide was confirmed.

Anodic Oxidation Treatment Methods of Metals (금속의 양극산화처리 기술)

  • Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Anodic oxidation treatment of metals is one of typical surface finishing methods which has been used for improving surface appearance, bioactivity, adhesion with paints and the resistances to corrosion and/or abrasion. This article provides fundamental principle, type and characteristics of the anodic oxidation treatment methods, including anodizing method and plasma electrolytic oxidation (PEO) method. The anodic oxidation can form thick oxide films on the metal surface by electrochemical reactions under the application of electric current and voltage between the working electrode and auxiliary electrode. The anodic oxide films are classified into two types of barrier type and porous type. The porous anodic oxide films include a porous anodizing film containing regular pores, nanotubes and PEO films containing irregular pores with different sizes and shapes. Thickness and defect density of the anodic oxide films are important factors which affect the corrosion resistance of metals. The anodic oxide film thickness is limited by how fast ions can migrate through the anodic oxide film. Defect density in the anodic oxide film is dependent upon alloying elements and second-phase particles in the alloys. In this article, the principle and mechanisms of formation and growth of anodic oxide films on metals are described.

Surface Modification of Functional Titanium Oxide to Improve Corrosion Resistance (내식성 향상을 위한 기능성 타이타늄 표면 개질)

  • Park, Youngju;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.256-265
    • /
    • 2021
  • Titanium is applied in various industries due to its valuable properties and abundant reserves. Generally, if a highly uniform oxide structure and a high-density oxide film is formed on the surface through anodization treatment, the utility value such as color appearance and corrosion inhibition efficiency is further increased. The objective of this study was to determine improvement of water-repellent property by controlling titanium oxide parameters such as pore size and inter-pore distance to improve corrosion resistance. Oxide film structures of different shapes were prepared by controlling the anodization processing time and voltage. These oxide structures were then analyzed using a Field Emission Scanning Electron Microscope (FE-SEM). Afterwards, a Self-Assembled Monolayer (SAM) coating was performed for the oxide structure. The contact angle was measured to determine the relationship between the shape of the oxide film and the water-repellency. The smaller the solid fraction of the surface, the higher the water-repellent effect. The surface with excellent hydrophobic properties showed improved corrosion resistance. Such water-repellent surface has various applications. It is not only useful for corrosion prevention, but also useful for self-cleaning. In addition, a hydrophobic titanium may open up a new world of biomaterials to remove bacteria from the surface.

Extraction of Exact Layer Thickness of Ultra-thin Gate Dielectrics in Nanoscaled CMOS under Strong Inversion

  • Dey, Munmun;Chattopadhyay, Sanatan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.100-106
    • /
    • 2010
  • The impact of surface quantization on device parameters of a Si metal oxide semiconductor (MOS) capacitor has been analyzed in the present work. Variation of conduction band bending, position of discrete energy states, variation of surface potential, and the variation of inversion carrier concentration at charge centroid have been analyzed for different gate voltages, substrate doping concentrations and oxide thicknesses. Oxide thickness calculated from the experimental C-V data of a MOS capacitor is different from the actual oxide thickness, since such data include the effect of surface quantization. A correction factor has been developed considering the effect of charge centroid in presence of surface quantization at strong inversion and it has been observed that the correction due to surface quantization is crucial for highly doped substrate with thinner gate oxide.

Anodic Growth of Vanadium Oxide Nanostructures (Vanadium Oxide 나노구조 형성)

  • Lee, Hyeon-Gwon;Lee, Gi-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.68-68
    • /
    • 2018
  • Nanoporous or nanotubular metal oxide can be fabricated by anodization of metal substrate in fluoride contained electrolytes. The approach allows various transition metals such as Zr, Hf, Nb, Ta to form highly ordered oxide nanostructures. These oxide nanostructures have various advantages such as high surface area, fast electron transport rate and slow recombination in semiconductive materials. Recently, vanadium oxide nanostructures have been drawn attentions due to their superior electronic, catalytic and ion insertion properties. However, anodization of vanadium metal to form oxide layers is relatively difficult due to ease formation of highly soluble complex in water contained electrolyte during anodization. Yang et al. reported $[TiF_6]^{2-}$ or $[BF_4]^-$ in electrolyte helps to formation of stable oxide layer [1, 2]. However, the reported approaches are very sensitive in other parameters. In this presentation, we deal with the other important key parameters to form ordered anodic vanadium oxide such as pH, temperatures and applied potential.

  • PDF

A Study on the Infrared Radiation Properties of Anodized Aluminum (양극산화된 알루미늄의 적외선 복사특성 연구)

  • 강병철;최정진;김기호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.149-157
    • /
    • 2002
  • Spectral emissivity depends on the surface conditions of the materials. The mechanisms that affect the spectral emissivity in anodic oxide films on aluminum were investigated. The aluminum specimens were anodized in a sulfuric acid solution and the thickness of the resulting oxide film formed changed with the anodizing time. FT-IR spectrum analysis identified the anodic oxide film as boehmite ($Al_2$$O_3$.$H_2$O). Both the infrared emisivity and reflectivity of the anodized aluminum were affected by the structure of the anodic oxide film because Al-OH and Al-O-Al have a pronounced absorption band in the infrared region of the spectrum. The presence of an anodic oxide film on aluminum caused a rapid drop in the infrared reflectivity. An aluminum surface in the clean state had an emissivity of approximately 0.2. However, the infrared emissivity rapidly increased to 0.91 as the thickness of the anodic oxide film increased.

Nickel Doping on Cobalt Oxide Thin Film Using by Sputtering Process-a Route for Surface Modification for p-type Metal Oxide Gas Sensors

  • Kang, Jun-gu;Park, Joon-Shik;An, Byeong-Seon;Yang, Cheol-Woong;Lee, Hoo-Jeong
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1867-1872
    • /
    • 2018
  • This study proposes a route for surface modification for p-type cobalt oxide-based gas sensors. We deposit a thin layer of Ni on the Co oxide film by sputtering process and annealed at $350^{\circ}C$ for 15 min in air, which changes a typical sputtered film surface into one interlaced with a high density of hemispherical nanoparticles. Our in-depth materials characterization using transmission electron microscopy discloses that the microstructure evolution is the result of an extensive inter-diffusion of Co and Ni, and that the nanoparticles are nickel oxide dissolving some Co. Sensor performance measurement unfolds that the surface modification results in a significant sensitivity enhancement, nearly 200% increase for toluene (at $250^{\circ}C$) and CO (at $200^{\circ}C$) gases in comparison with the undoped samples.