• Title/Summary/Keyword: Surface ordering

Search Result 63, Processing Time 0.04 seconds

Electronic Structure and Magnetic Moments of Copper-atom in/on GaN Semiconductor

  • Kang, Byung-Sub;Lee, Haeng-Ki
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.51-55
    • /
    • 2010
  • The electronic and magnetic properties of Cu-doped GaN with a Cu concentration of 6.25% and 12.5% are examined theoretically using the full-potential linear muffin-tin orbital method. The magnetic moment of Cu atoms decreases with increasing Cu concentration. The spin-polarization of Cu atoms is reduced due to the Cu d-d interaction depending on the distance between the nearest neighbouring Cu atoms. Cu atoms exhibits a clustering tendency in GaN. For Cu-adsorbed GaN thin films with a surface coverage of 0.25, the ferromagnetic state is found to be the energetically favourable state with an induced magnetic moment of $0.54\;{\mu}_B$ per supercell.

Length- and parity-dependent electronic states in one-dimensional carbon atomic chains on C(111)

  • Kim, Hyun-Jung;Oh, Sang-Chul;Kim, Ki-Seok;Zhang, Zhenyu;Cho, Jun-Hyung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.56-56
    • /
    • 2010
  • Using first-principles density-functional theory calculations, we find dramatically different electronic states in the C chains generated on the H-terminated C(111) surface, depending on their length and parity. The infinitely long chain has $\pi$ electrons completely delocalized over the chain, yielding an equal C-C bond length. As the chain length becomes finite, such delocalized $\pi$ electrons are transformed into localized ones. As a result, even-numbered chains exhibit a strong charge-lattice coupling, leading to a bond-alternated structure, while odd-numbered chains show a ferrimagnetic spin ordering with a solitonlike structure. These geometric and electronic features of infinitely and finitely long chains are analogous to those of the closed (benzene) and open (polyacetylene) chains of hydrocarbons, respectively.

  • PDF

Charge-carrier Transport Properties of Organic Photoconductor by Photo-isomerization of Liquid Crystal with Azo Group (Azo기를 가지는 액정의 광 이성화에 따른 유기 광전도체의 carrier 수송 특성)

  • Lee, Bong;Sung, Jung-Hee;Moon, Chang-Kwon
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.473-477
    • /
    • 1999
  • Xerographic properties of double-layer photoconductor doped with 4-butyl-4'-methoxyazobenzene (BMAB) as charge-carrier transport material were investigated. BMAB can undergo reversible trans-cis isomerization by light with appropriate wavelength. In the results of measured surface voltage properties for photoconductor doped with BMAB, TNF: BMAB(4-wt%) sample with trans form showed the lowest dark decay, the lowest residual voltage, and the highest sensitivity among cis form. The trans isomer of BMAB has ordering orientation because the molecule possesses a rodlike shape, while the cis isomer has random orientation due to its bent shape. Therefore the molecular arrangement of trans form enhanced charge-carrier transport mobility.

  • PDF

Strain induced magnetic stripe domains in $La_{0.7}Sr_{0.3}MnO_3$ thin films

  • Joonghoe Dho;Kim, Y. N.;Y. S. Hwang;E. O. Chi;Kim, J. C.;Lee, E. K.;N. H. Hur
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.84-85
    • /
    • 2002
  • Recently doped perovskite manganites have renewed interest because they exhibit a variety of unique magnetic and electronic behaviors such as colossal magnetoresistance (CMR), percolative phase separation, spin/charge/orbital ordering, and so on. For this reason, fabrication of thin films with the best surface morphology and controlling their magneto transport properties is essential for making magneto-resistive devices. (omitted)

  • PDF

The Study on the the P3HT:PCBM Bulk Heterojunction Solar Cells Utilizing $WO_3$ Nano-particle As a Hole Transporting Layer

  • Choe, Ha-Na;Kim, Seong-Hyeon;Kim, Gyeong-Gon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.321-321
    • /
    • 2010
  • The PEDOT:PSS layer is usually used as hole transporting layer for the polymer bulk heterojunction solar cells. However, the interface between ITO and PEDOT:PSS is not stable and the chemical reaction between ITO and PEDOT can result in degraded device performance. We used the tungsten oxides as a hole transport layer by spin-coating. The $WO_3$ nanoparticles were well dispersed in ammonium hydroxide and deionized water and formed thin layer on the ITO anode. We found that $WO_3$ surface is more hydrophobic than the bare ITO or PEDOT:PSS-coated surfaces. The hydrophobic surfaces promote an ordered growth of P3HT films. A higher degree of P3HT ordering is expected to improve the hole mobility and the lifetime of the device using the tungsten oxide showed better stability compared to the device using the PEDOT:PSS.

  • PDF

A Statistical Theory of Conformational Properties of Amphiphile Molecules at the Air-Water Interface

  • Young Shang Pak;Hyungsuk Pak
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.170-177
    • /
    • 1991
  • A lattice mean field theory is developed to investigate the conformational properties of monolayer amphiphiles at the air-water interface. By generalizing Dill and Cantor's method and by extending Whittington's recurrence equation, we derive the supermatrix recurrence equation which is applied to calculation of various segment density profiles and order parameter, etc. In deriving the equation, we incorporated the chain stiffness effect and the chain connectivity which are distinguished features of linear chain molecule. Our result shows that, as the surface coverage $\sigma$ increases the chain ordering process with respect to vertical axis of the lattice system becomes dominant.

Implementation of User Interface for DNA Micro Array Printing Technology (DNA 마이크로어레이 프린팅을 위한 사용자 인터페이스 적용기술)

  • Park, Jae-Sam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.12
    • /
    • pp.1875-1882
    • /
    • 2013
  • Micro-array technology contributes numerous achievements such as ordering of gene network and integration of genomic. This technology is well established as means for investigating patterns of gene expression. DNA micro-arrays utilize Affymetric chips where a large quantity of DNA sequences may be synthesized. There are two general type of conventional DNA array spotter: contact and piezoelectric. The contact technology used spotting pin technology to make contact with the glass slide surface. This may caused damage or scratches to the surface matrix where protein will be contaminated and may not bind specifically. Piezoelectric technology available at this present time on the other hand requires the analyzer to print the result that can only be done within the laboratory despite of mass production. Therefore, in this paper, high-throughput technology is developed for providing greater consistency in feature spot without touching the glass slide surface.

Flux pinning properties of rf-sputtered YBCO films with $BaZrO_3$ doping (스퍼터링법에 의한 $BaZrO_3$도핑 YBCO 박막의 자속고정 특성 연구)

  • Chung, K.C.;Kim, Y.K.;Wang, X.L.;Dou, S.X.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.374-374
    • /
    • 2009
  • We have fabricated pure YBCO films and $BaZrO_3$ doped ones on $CeO_2$ buffered YSZ single crystal substrates using rf-sputtering method. In this work, pure YBCO and 2 vol% BZO doped YBCO target were used to investigate the flux pinning properties of BZO doped YBCO films compared to undoped ones. BZO nanodots within the superconducting materials was known to comprise the self-assembled columnar defects along the c-axis from the bottom of YBCO films up to the top surface, thus can be a very strong pinning sites in the applied magnetic field parallel to them. We will discuss the possibility of growing self-assembled columnar defects in the rf-sputtering method. It is speculated that BZO and YBCO phases can separate and BZO form nanodots surrounded by YBCO epitaxial layers and continuous phase separation and ordering between these two materials, which was well studied in Pulsed Laser Deposition method. For this purpose, some severe experimental conditions such as on-axis sputtering, shorter target-substrate distance, high rf-power, etc was adopted and their results will be presented.

  • PDF

Nanostructures in Thin Films of Block Copolymers

  • Russell Thomas P.;Hawker Craig J.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.80-80
    • /
    • 2006
  • As the size scale of features continue to shrink in devices, the use of self-assembly, i.e. a "bottom up" approach, for device fabrication becomes increasingly important. Yet, simple self-assembly alone will not be sufficient to meet the increasing demands place on the registry of structures, particularly nanostructured materials. Several criteria are key in the rapid advancement and technology transfer for self-assembling systems. Specifically, the assembly processes must be compatible with current $^{\circ}{\infty}top\;down^{\circ}{\pm}$ approaches, where standard photolithographic processes are used for device fabrication. Secondly, simple routes must be available to induce long-range order, in either two or three dimensions, in a rapid, robust and reliable manner. Thirdly, the in-plane orientation and, therefore, ordering of the structures, must be susceptible to a biasing by an external, macroscopic means in at least one, if not two directions, so that individual elements can be accessed in a reliable manner. Block copolymers, specifically block copolymers having a cylindrical microdomain morphology, are one such material that satisfy many, if not all, of the criteria that will be necessary for device fabrication. Here, we discuss several routes by which these versatile materials can be used to produce arrays of nanoscopic elements that have high aspect ratios (ideal for templating and scaffolding), that exhibit long-range order, that give access to multiple length scale structuring, and that are amenable to being biased by macroscopic features placed on a surface.

  • PDF

Characterization of Spherical NiO-YSZ Anode Composites for Solid Oxide Fuel Cells Synthesized by Ultrasonic Spray Pyrolysis

  • Lim, Chae-Hyun;Lee, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.243-247
    • /
    • 2014
  • Spherical NiO-YSZ particles were synthesized by ultrasonic spray pyrolysis (USP). The morphology of the synthesized particles can be modified by controlling parameters such as precursor pH, carrier-gas flow-rate, and temperature of the heating zone. The synthesized spherical NiO-YSZ particles have rough surface morphology at high carrier-gas flow-rates due to rapid gas exhaustion and insufficient particle ordering. The Ni-YSZ cermet anode synthesized by ultrasonic spray pyrolysis at a flow rate of l L/min, with precursor solution at pH4, showed a higher maximum power density of 256 $mW/cm^2$ compared to a conventionally mixed Ni-YSZ anode (185 $mW/cm^2$) at $800^{\circ}C$. While the area-specific resistance of conventionally mixed Ni-YSZ anodes increases gradually with operation time (indicating performance degradation), the Ni-YSZ anode synthesized by USP does not exhibit any performance degradation, even after 500 h.