• 제목/요약/키워드: Surface of Concrete

검색결과 2,412건 처리시간 0.037초

고강도콘크리트의 고속펌핑을 위한 압송성평가 및 예측모델에 관한 연구 (Development of Evaluation and Prediction Model for Concrete High Speed Pumping)

  • 김형래;조호규;정웅택
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.201-203
    • /
    • 2012
  • The establishment of the technology for evaluating friction resistance and pipe pressure and the relation of the fluid characteristics and pumpability of concrete is essential for the evaluation of concrete pumping performance for high speed construction of super-tall building. So, this study focuses on quantitative evaluation of concrete fluid characteristics and surface friction resistance under the change of concrete mix proportion and pumping condition. In this study, we measured the rheology of concrete and pipe pressure and surface friction characteristics when pumping. And, relations between the rheology characteristics of concrete and pumping performance was investigated by experiment. As the result of the experiment, high regression between the surface friction and pressure gradient was confirmed. And, prediction model to evaluate the friction resistance coefficient and pipe pressure reduction coefficient was suggested.

  • PDF

콘크리트 표면밀도 증가에 의한 원전구조 성능개선 연구 (The research for the durable-performance improvement of nuclear concrete structures by increasing the density of concrete surface layer)

  • 최홍식;이시우;허권;이상민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.253-256
    • /
    • 2006
  • For nuclear concrete structures on the coast, the prevention and management against salt damage is needed because they are being under the influence of the sea water at all times. In general, the deterioration of the concrete is generated in concrete surface firstly and then extended into concrete gradually as its service life increases. Therefore, the protective layer on the concrete surface is needed to establish and manage the durability of concrete. To enhance the durability performance of the existing and new concrete, the development and application of a high-performance penetration sealer is needed. The sealer has to have the functions that are able to prevent the attack of the moisture, carbon dioxide, and harmful substance from the outside. Therefore, the aim of this project is to guarantee the long service-life and waterproof performance of a nuclear concrete structures by increasing the density of the existing and new concrete surface layer, and to enhance the dust-proof performance of the uncoating part of the nuclear safety-relative structures.

  • PDF

원격조종 콘크리트 표면절삭 장비를 위한 머신비전 기반 품질관리 시스템 (Machine Vision based Quality Management System for Tele-operated Concrete Surface Grinding Machine)

  • 김정환;피승우;서종원
    • 대한토목학회논문집
    • /
    • 제33권4호
    • /
    • pp.1683-1691
    • /
    • 2013
  • 콘크리트 표면절삭 작업은 포장면의 노화 또는 파손으로 인한 보수작업과 그루빙(Grooving) 시공을 통한 포장면의 배수능력을 강화하거나 평탄성을 확보를 위하여 자주 적용되는 공법이다. 그러나 그 작업특성이 노동집약적이고 분진, 슬러지, 소음 등으로 인한 유해한 작업환경을 보유하고 있으며 장비를 다루는 기능공의 숙련도에 따라 생산성 및 절삭품질의 편차가 큰 경향이 있다. 따라서 장비 조종자가 각종 위험에 노출되지 않도록 하기 위한 원격조종 콘크리트 표면절삭 장비 개발이 필요하다. 원격 조종 환경에서는 조종자가 객관적인 절삭 품질을 확인함과 동시에 장비가 계획 경로에 따라 작업이 올바르게 수행되고 있는지를 확인할 수 있도록 하는 지원시스템이 필요케되는 바, 본 연구에서는 머신비전 시스템(Machine Vision System)과 GPS를 적용하여 네트워크 카메라로 촬영한 절삭면의 이미지를 디지털 영상처리(Image Processing)과정을 거쳐 객관적이며 품질관리 프로세스가 자동화된 시스템을 구축하였다. 또한 장비의 현재 위치와 방향, 속도, 계획된 경로와의 오차정보 그리고 작업의 진척도 등을 종합적으로 산출하여 워크 스테이션에 표시함과 동시에 머신 비전 시스템에 의한 작업 품질 정보와의 통합을 위한 프로그램을 개발하였으며, 현장 적용 테스트를 통해 본 기술을 검증하였다.

콘크리트 표면의 유체이동특성과 최소피복두께 결정을 위한 제안 (Fluid Transport Properties of Skin Concrete and New Suggestion to Determine Minimum Cover Concrete)

  • 이창수;윤인석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.543-546
    • /
    • 2002
  • This paper discussed micro - structure of skin concrete to understand transport properties from surface and seek thickness from surface which is seriously influenced on durability. Concrete at nearer surface has high porosity relative to inner concrete. The porosity of concrete and ISAT value at region from surface to 20 mm depth is decreased with depth. On the other hand, according to the result of ASTM C 1202 with specimen thickness, critical depth which affects fast ionic penetration through interfacial transition zone (ITZ) equals 35mm and the critical depth would be directly influenced by the effects of ITZ on chloride diffusion unrelated with W/C ratio.

  • PDF

침투형 Nano-Coat를 이용한 콘크리트 열화 방지 적용성 평가 (Evaluation of Applicability of penetrating-type Nano-Coat for Preventing Deterioration of Concrete)

  • 이준희;김조순;심양모;이승우
    • 한국도로학회논문집
    • /
    • 제19권2호
    • /
    • pp.7-15
    • /
    • 2017
  • PURPOSES : Infiltration of moisture, polluted material, and deicer into concrete, accompanied by freeze and thaw can cause significant deterioration of concrete pavement. In order to protect concrete from deterioration, it is necessary to prevent the infiltration of these concrete external materials. The moisture-repellent agent, which is a surface treatment and maintenance material added to concrete structures to render them water resistant, has advantages such as prevention of water infiltration and security against air permeation. Nano-coat, which is referred to as silicon hydride, is typically used as a moisture-repellent agent. Therefore, in this study, an attempt is made to use penetration-type Nano-coat as an alternative in order to evaluate its applicability through environmental resistance tests. METHODS : This study aimed to evaluate the applicability of penetration-type Nano-coat, which can provide water repellency to concrete, in concrete pavements, through various environmental resistance tests such as freezing and thawing resistance, chloride ion penetration resistance, and surface scaling resistance tests. The applicability of penetration-type Nano-coat was demonstrated based on the specification of KS F 2711, KS F 2456, and ASTM C 672. RESULTS :In the case of penetration-type Nano-coat applied on sound concrete, an increase in concrete durability was demonstrated by the negligible chloride ion penetrability and the absence of scaling, as revealed by visual observation of the surface, after 50 cycles of scaling resistance test. In addition, test result of the application of penetration-type Nano-coat on deteriorated concrete established that concrete surface pretreated by grinding provided improved durability than non-treated concrete. CONCLUSIONS :This study indicates that penetration-type Nano-coat is applicable as an effective alternative, to increase the durability of concrete structures. In addition, it was known that pretreatment of deteriorated concrete surface, such as grinding, is required to improve the long-term performance of concrete pavement.

Cause of Surface voids in Concrete Attached to an Aluminum Form, and Measures for Prevention

  • Noh, Sang-Kyun;Lee, Seung-Hoon;Han, Cheon-Goo
    • 한국건축시공학회지
    • /
    • 제13권5호
    • /
    • pp.457-464
    • /
    • 2013
  • Traditionally, the material used for the form in reinforced concrete construction has been wood or steel. But recently, aluminum forms have been widely used in wall structures such as apartment buildings. Aluminum is light, easy to handle, and economically advantageous, but the hydrogen gas created due to its reaction with the alkali component in concrete gives rise to air pockets on the concrete's surface, and deteriorates the surface's finishability. In this research, to determine the influence of aluminum material on concrete, the cement paste W/C and its chemical reactivity in alkali and acid solution were analyzed. As a prevention plan, the influence of the number of applications of calcium hydroxide and various surface coating materials was analyzed. Through the analysis, it was found that the surface voids on the aluminum form are the result of the reaction of hydrogen gas with an alkali such as $Ca(OH)_2$. This can be prevented by the surface treatment of $Ca(OH)_2$, separating material and coating material. However, poor surface form and damages to the form are expected to cause quality degradation because of the aluminum-concrete interaction. Therefore, thorough surface treatment, rather than the type of separating material or coating material, is considered the most important target of management.

콘크리트의 응력파 속도 측정을 위한 One-sided technique 개발 (Development of Advanced One-sided Stress Wave Velocity Measurement in Concrete)

  • 이준현;송원준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.537-543
    • /
    • 1997
  • A new procedure for the advanced one-side measurement of longitudinal wave and surface wave velocities in concrete is presented in this paper. Stress waves are generated in a consistent fashion with a DC solenoid. Two piezoelectric accelerometers are mounted on the surface of a specimen as receivers. Stress waves propagate along the surface of the specimen and are detected by the receivers. In order to reduce the large incoherent noise levels of the signals, signals are collected and manipulated by a computer program for each velocity measurement. For a known distance between the two receivers and using the measured flight times, the velocities of the longitudinal wave and the surface wave are measured. The velocities of the longitudinal wave determined by this method are compared with those measured by conventional methods on concrete, PMMA and steel.

  • PDF

Mechanisms of ASR surface cracking in a massive concrete cylinder

  • Kagimoto, Hiroyuki;Yasuda, Yukihiro;Kawamura, Mitsunori
    • Advances in concrete construction
    • /
    • 제3권1호
    • /
    • pp.39-54
    • /
    • 2015
  • Relative humidity and strains within a massive concrete cylinder (${\varphi}450mm{\times}900mm$) in the drying and the re-saturating process were measured for elucidating the process of ASR surface cracking in concrete. The expansion behavior of mortars in dry atmospheres with various R.H. values and the resaturating process was revealed. Non- or less-expansive layers were formed in near-surface regions in the concrete cylinder in the drying process, but ASR expansions actively progressed in inner portions. After resaturating, R.H. values of near-surface regions rapidly increased with time, but expansions in the regions were found to be very small. However, in the middle portions, of which R.H. values were kept 80% ~ 90% R.H. in the drying process, expansion actively progressed, resulting in further development of surface cracks in the re-saturating process.

알루미늄 거푸집 표면코팅재의 전용횟수에 따른 콘크리트의 품질변화 (Quality Changes in Concrete According to the Number of Use of Aluminum Form Surface Coating Material)

  • 이일선;박병관;백대현;박재순;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 춘계 학술논문 발표대회 학계
    • /
    • pp.123-126
    • /
    • 2009
  • This study is analyzed the effects of the number of use of aluminum form surface coating material on surface quality of concrete. The results can be summarized as follows. Surface roughness showed larger values with increase in the number of use. Values were larger in UP and AL compared to PE. While found to have bad influence on concrete surface quality, PA and W showed most excellent values for roughness. The number of surface pores increased with increasing number of use, and the number of pores on concrete surface was reduced by applying a remover. In terms of type of surface coating material, PA and W showed smallest number of pores in comparison to PE. In order to comprehensively improve surface quality of concrete, parallel use of PA coating material and remover is deemed most appropriate.

  • PDF

알루미늄 거푸집 표면코팅재가 콘크리트 표면품질에 미치는 영향 (The Effects of Surface Coating Material for Aluminum Form on Surface Quality of the Concrete)

  • 한천구;박재순
    • 한국건축시공학회지
    • /
    • 제10권3호
    • /
    • pp.57-64
    • /
    • 2010
  • 본 연구는 알루미늄 거푸집 표면코팅재가 콘크리트 표면품질에 미치는 영향에 대하여 분석한 것이다. 콘크리트 표면형상에 미치는 알루미늄 거푸집 표면코팅재 변화의 영향에 따른 콘크리트 표면의 육안관찰시 전반적으로 전용횟수가 증가함에 따라 표면품질은 저하하는 것으로 나타났고, 치장합판(Plywood이하: PW)이 우수한 표면품질을 나타내었다. 에폭시(Epoxy :이하 EP) 수지의 경우는 박리제를 도포하였을 시 표면품질이 우수한 것으로 나타났다. 박리제 도포여부 및 전용횟수에 따른 콘크리트의 표면조도는 전용횟수가 증가함에 따라 가장 높은 표면조도 값을 나타내어 평활성이 불량한 것으로 나타났지만, EP와 PW의 표면조도 값은 가장 우수한 것으로 나타났다. 다만 EP의 경우는 박리제를 도포할 경우 표면조도 값이 낮게 나타났다. 박리제 도포여부 및 전용횟수에 따른 콘크리트의 공극갯수는 전반적으로 박리제를 도포할시 저감하는 것으로 나타났다.