• Title/Summary/Keyword: Surface modification

Search Result 1,917, Processing Time 0.035 seconds

Evaluation of Thermal Behavior of Oil-based Nanofluids using Ceramic Nanoparticles (세라믹 분말을 이용한 오일 기지 나노유체의 열적거동 평가)

  • Choi, Cheol;Yoo, Hyun-Sung;Oh, Je-Myung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.587-593
    • /
    • 2007
  • Oil-based nanofluids were prepared by dispersing spherical and fiber shaped $Al_2O_3$ and AlN nanoparticles in transformer oil. Two hydrophobic surface modification processes using oleic acid (OA) and polyoxyethylene alkyl acid ester (PAAE) were compared in this study. The dispersion stability, viscosity and breakdown voltage of the nanofluids were also characterized. $(Al_2O_3+AlN)$ mixed nanofluid was prepared to take an advantage of the excellent thermal conductivity of AlN and a good convective heat transfer property of fiber shaped $Al_2O_3$. For $(Al_2O_3+AlN)$ particles with 1 % volume fraction in oil, the enhancement of thermal conductivity and convective heat transfer coefficient was nearly 11 % and 30 %, respectively, compared to pure transformer oil. The nanofluid, containing $Al_2O_3+AlN$, successfully lowered the temperature of the heating element and oil itself during a natural convection test using a prototype transformer.

Spatial mapping of screened electrostatic potential and superconductivity by scanning tunneling microscopy/spectroscopy

  • Hasegawa, Yukio;Ono, Masanori;Nishio, Takahiro;Eguchi, Toyoaki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.12-12
    • /
    • 2010
  • By using scanning tunneling microscopy/spectroscopy (STM/S), we can make images of various physical properties in nanometer-scale spatial resolutions. Here, I demonstrate imaging of two electron-correlated subjects; screening and superconductivity by STM/S. The electrostatic potential around a charge is described with the Coulomb potential. When the charge is located in a metal, the potential is modified because of the free electrons in the host. The potential modification, called screening, is one of the fundamental phenomena in the condensed matter physics. Using low-temperature STM we have developed a method to measure electrostatic potential in high spatial and energy resolutions, and observed the potential around external charges screened by two-dimensional surface electronic states. Characteristic potential decay and the Friedel oscillation were clearly observed around the charges [1]. Superconductivity of nano-size materials, whose dimensions are comparable with the coherence length, is quite different from their bulk. We investigated superconductivity of ultra-thin Pb islands by directly measuring the superconducting gaps using STM. The obtained tunneling spectra exhibit a variation of zero bias conductance (ZBC) with a magnetic field, and spatial mappings of ZBC revealed the vortex formation [2]. Size dependence of the vortex formation will be discussed at the presentation.

  • PDF

Photoelectrochemical Water Oxidation and $CO_2$ Conversion for Artificial Photosynthesis

  • Park, Hyunwoong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.70-70
    • /
    • 2013
  • As the costs of carbon-footprinetd fuels grow continuously and simultaneously atmospheric carbon dioxide concentration increases, solar fuels are receiving growing attention as alternative clean energy carriers. These fuels include molecular hydrogen and hydrogen peroxide produced from water, and hydrocarbons converted from carbon dioxide. For high efficiency solar fuel production, not only light absorbers (oxide semiconductors, Si, inorganic complexes, etc) should absorb most sunlight, but also charge separation and interfacial charge transfers need to occur efficiently. With this in mind, this talk will introduce the fundamentals of solar fuel production and artificial photosynthesis, and then discuss in detail on photoelectrochemical (PEC) water splitting and CO2 conversion. This talk largely divides into two section: PEC water oxidation and PEC CO2 reduction. The former is very important for proton-coupled electron transfer to CO2. For this oxidation, a variety of oxide semiconductors have been tested including TiO2, ZnO, WO3, BiVO4, and Fe2O3. Although they are essentially capable of oxidizing water into molecular oxygen, the efficiency is very low primarily because of high overpotentials and slow kinetics. This challenge has been overcome by coupling with oxygen evolving catalysts (OECs) and/or doping donor elements. In the latter, surface-modified p-Si electrodes are fabricated to absorb visible light and catalyze the CO2 reduction. For modification, metal nanoparticles are electrodeposited on the p-Si and their PEC performance is compared.

  • PDF

Soft Lithography of Graphene Sheets Via Surface Energy Modification

  • Kim, Hansun;Jung, Min Wook;Myung, Sung;Jung, Daesung;Lee, Sun Sook;Kong, Ki-Jeong;Lim, Jongsun;Lee, Jong-Heun;Park, Chong Yun;An, Ki-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.144.2-144.2
    • /
    • 2013
  • With the synthesis of graphene sheets as large-scale and high quality, it is essentially important to develop suitable graphene patterning process for future industrial applications. Especially, transfer or patterning method of CVD-grown graphene has been studied. We report simple soft lithographic process to develop easily applicable patterning method of large-scale graphene sheets by using chemically functionalized polymer stamp. Also important applications, the prototype capacitors with graphene electrode and commercial polymer dielectrics for the electrostatic-type touch panel are fabricated using the developed soft lithographic patterning and transfer process.

  • PDF

A Study on Effect of Heat Treatment on Electrochemical Characteristics of Silicon-coated Graphite (실리콘이 코팅된 흑연의 열처리 효과에 따른 전기화학적 특성에 대한 연구)

  • Lee Myungro;Byun Dongjin;Jeon Bub Ju;Lee Joong Kee
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.66-72
    • /
    • 2005
  • Surface modification of the silicon-coated graphite was carried out at $200^{\circ}C\~800^{\circ}C$ under hydrogen atmosphere. The silicon-coated graphites were prepared by fluidized-bed spray coating method. The components of silicon films prepared on the graphite consist of SiO, $SiO_x\;(1. The components of silicon films at $200^{\circ}C$ of heat treatment brought on the higher fraction of SiO and $SiO_x$ than that of $SiO_2$. However, inactive $SiO_2$ fraction increases with increase of the heat treatment temperature. The high content of SiO and $SiO_x$ in the silicon film on graphite leads to the higher discharge capacity in our experimental range.

High-performance photovoltaics by double-charge transporters using graphenic nanosheets and triisopropylsilylethynyl/naphthothiadiazole moieties

  • Agbolaghi, Samira;Aghapour, Sahar;Charoughchi, Somaiyeh;Abbasi, Farhang;Sarvari, Raana
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.293-300
    • /
    • 2018
  • Reduced graphene oxide (rGO) nanosheets were patterned with poly[benzodithiophene-bis(decyltetradecyl-thien) naphthothiadiazole] (PBDT-DTNT) and poly[bis(triiso-propylsilylethynyl) benzodithiophene-bis(decyltetradecyl-thien) naphthobisthiadiazole] (PBDT-TIPS-DTNT-DT) and used in photovoltaics. Conductive patternings changed via surface modification of rGO; because polymers encountered a high hindrance while assembling onto grafted rGO. The best records were detected in indium tin oxide (ITO):poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS):PBDTDTNT/rGO:PBDT-DTNT:LiF:Al devices, i.e., short current density $(J_{sc})=11.18mA/cm^2$, open circuit voltage $(V_{oc})=0.67V$, fill factor (FF) = 62% and power conversion efficiency (PCE) = 4.64%. PCE increased 2.31 folds after incorporation of PBDT-DTNT into thin films. Larger polymer assemblies on bared-rGO nanosheets resulted in greater phase separations.

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction IV. Modification of $CoMo/γ-Al_2O_3$ Catalyst with K

  • Park, Jin Nam;Kim, Jae Hyeon;Lee, Ho In
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1239-1244
    • /
    • 2000
  • A study of K addition to the catalyst of CoMo/ ${\gamma}-Al_2O_3$ was studied. The catalyst with 10 at% of K to Mo atoms in 3C10M, the catalyst added 3 wt% CoO to 10 wt% $MoO_3/{\gamma}-Al_2O_3$, showed the highest activity for water gas shift reaction. The addition of K retarded the reducibility of cobalt-molybdenum catalysts. It gave, however, good dispersion and large BET surface area to the catalysts which were attributed to the disappearance of polymolybdate clustyer such as $Mo_7O_{24}^{6-}$ and the formation of small Mo$O_4^{2-}$ cluster. It was confirmed by the analyses of pore size distribution, activation energy, Raman spectroscopy, and electron diffraction. The activation energies and the frequency factors of the catalysts 3C10M and 5KC10M (the catalyst added 5 at% K for Mo to the catalyst 3C10M) were 43.1 and 47.8 kJ/mole, and 4,297 and 13,505 $sec^{-1}$, respectively. These values were also well correlated with our suggestion. These phenomena were attributed to the direct interaction between K and CoMo oxides irrelevant to the support.

Chemical, Mechanical, Thermal, and Colorimetric Features of the Thermally Treated Eucalyptus grandis Wood Planted in Brazil

  • SCHULZ, Henrique Romer;ACOSTA, Andrey Pereira;BARBOSA, Kelvin Techera;JUNIOR, Mario Antonio Pinto da Silva;GALLIO, Ezequiel;DELUCIS, Rafael de Avila;GATTO, Darci Alberto
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.226-233
    • /
    • 2021
  • This article aimed at thermally treating and charactering the Eucalyptus grandis wood under three different temperatures. For this, pristine eucalypt samples were treated by heating in a laboratory oven at 160 ℃, 200 ℃ and 240 ℃, always for 2 h. Treatment parameters (based on weight percentage loss and specific gravity), as well as mechanical (by hardness tests), chemical (by infrared spectroscopy), thermal (by thermogravimetry), and colorimetric (by CIELab method) features were evaluated. Compared to the pristine ones, the treated woods have there was a drop in apparent density at 12 % and consecutively greater thermal stability which is probably related to a previous partial degradation of some major amorphous components (namely cellulose, hemicellulose and lignin), as suggested by the treatment parameters and infrared spectra. Besides of that, the higher the temperature treatment, the higher the loss in surface hardness and the higher the colour darkening.

The Study on the Properties of He Glow discharge in a Dielectric Barrier Discharge (DBD) Model (DBD 전극구조에서의 He 가스 글로우방전 특성연구)

  • So, Soon-Youl
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.214-220
    • /
    • 2018
  • Light sources induced by gas discharge using rare gases have been widely used in the thin film deposition, the surface modification and the polymer etching. A dielectric barrier discharge (DBD) has been developed in order to consistently emit light and control the wavelength of the emission light. However, much research on the characteristics of the movement of discharge particles is required to improve the efficiency of the light lamp and the life-time of the light apparatus in detail. In this paper, we developed a He DBD discharge simulation tool and investigated the characteristics of discharge particles which were electrons, two positive ions ($He^+$, $He_2^+$) and 5 excited particles ($He^*(1S)$, $He^*(3S)$, $He^*$, $He^{**}$, $He^{***}$). The discharge currents showed the transition from pulse mode to continuous mode with the increase of power. With the accumulated charges on the barrier walls, the discharge current was rapidly increased and caused oscillation of the discharge voltage. As the gas pressure increased, $He_2^+$ and $He^*(3S)$ became the dominant activated particles. The input power was mostly consumed by electrons and $He_2^+$ ion. And the change curve showed that power consumption by electrons increased more with gas pressure than with source voltage or frequency.

Investigation of single bubble behavior under rolling motions using multiphase MPS method on GPU

  • Basit, Muhammad Abdul;Tian, Wenxi;Chen, Ronghua;Basit, Romana;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1810-1820
    • /
    • 2021
  • Study of single bubble behavior under rolling motions can prove useful for fundamental understanding of flow field inside the modern small modular nuclear reactors. The objective of the present study is to simulate the influence of rolling conditions on single rising bubble in a liquid using multiphase Moving Particle Semi-implicit (MPS) method. Rolling force term was added to 2D Navier-Stokes equations and a computer program was written using C language employing OpenACC to port the code to GPU. Computational results obtained were found to be in good agreement with the results available in literature. The impact of rolling parameters on trajectory and velocity of the rising bubble has been studied. It has been found that bubble rise velocity increases with rolling amplitude due to modification of flow field around the bubble. It has also been concluded that the oscillations of free surface, caused by rolling, influence the bubble trajectory. Furthermore, it has been discovered that smaller vessel width reduces the impact of rolling motions on the rising bubble. The effect of liquid viscosity on bubble rising under rolling was also investigated and it was found that effects of rolling became more pronounced with the increase of liquid viscosity.