• 제목/요약/키워드: Surface modification

검색결과 1,905건 처리시간 0.03초

대기압 플라스마에 의한 폴리우레탄 필름의 표면 개질 (Surface Modification of Polyurethane Film Using Atmospheric Pressure Plasma)

  • 양인영;명성운;최호석;김인호
    • 폴리머
    • /
    • 제29권6호
    • /
    • pp.581-587
    • /
    • 2005
  • 상업용 폴리우레탄(PU) 필름의 표면 개질 목적으로 대기압에서 플라스마를 발생시키기 위한 dielectric barrier discharge(DBD) 구조의 평판형 플라스마 반응기 내에서 이온화된 아르곤 플라스마를 사용하였다. 플라스마 처리 공정변수인 처리 시간, 처리 RF-power, 아르곤 가스 유속을 변화시켜가며 접촉각을 측정하여 젖음성과 표면 자유 에너지 변화를 알아보았고, 필름 표면 위에 과산화물을 최대로 도입시키기 위해 플라스마 처리 공정변수를 최적화하였다. 대기압 플라스마 처리 시간 70초, RF-power 120 W, 아르곤 가스유속 6 liter per minute(LPM)에서 가장 높은 젖음성과 표면 자유 에너지 값을 보였고, 1,1-diphenyl-2-picrylhydrazy(DPPH) 법을 사용하여 PU 필름의 표면에 생성된 과산화물의 농도를 정량한 결과, 처리 시간 30초, RF-power 80 W, 아르곤 가스유속 6 LPM의 플라스마 처리 조건에서 최대 2.1 nmol/$\cm^{2}$의 과산화물이 생성되었다.

Bone Response to Anodized Titanium Implants in Rabbits

  • Lee, Jae-Hyun;Lee, Cheol-Won;Kim, Chang-Hyen;Pyo, Sung-Woon
    • Journal of Korean Dental Science
    • /
    • 제4권1호
    • /
    • pp.26-32
    • /
    • 2011
  • Purpose: The quality of implant surface is one of the factors that influence wound healing of implant site and subsequently affect osseointegration. The objective of modification of the surface properties of an implant is to affect the biological consequence. The purpose of this study is to evaluate the biologic response of osseous tissue to anodized implants. Materials and Methods: Two machined titanium implants for control group were installed in a tibia of each rabbit and two anodized implants for test group were installed in the other tibia of each rabbit. At the moment the implants were installed, resonance frequency analysis (RFA) values were measured. After healing periods of 1, 2, 3, and 7 weeks, the implants were uncovered and RFA values were measured again. Removal torque was measured for one implant in the test group and one implant in the control group. Histological evaluation was executed in the other implants. Results: Both of test group and control group have the tendency of greater RFA change rate and removal torque value as healing periods became longer, but were statistically insignificant (P>0.05). However, in the case of the same healing period, the test group tended to have greater RFA change rate and removal torque than the control group (P<0.05). More active new bone formation from endosteal surface was noted on the anodized surface than machined surface in specimen after 1 week. There were no significant differences between the test group and control group in histological evaluations. Conclusion: In summary, the anodized surface showed slightly favorable results and it is postulated that it may facilitate improved stability in bone.

비용매 휘발법을 이용한 생체모사 혈액친화성 폴리락티드-카프로락톤 공중합체 필름의 제조 (Blood-compatible Bio-inspired Surface of Poly(L-lactide-co-ε-caprolactone) Films Prepared Using Poor Co-solvent Casting)

  • 임진익;김수현
    • 폴리머
    • /
    • 제39권1호
    • /
    • pp.40-45
    • /
    • 2015
  • 혈항혈전성 표면의 제조를 위해 간단한 비용매 휘발 방법을 통하여 고탄성체이면서 생분해성 폴리 락티드-카프로락톤 공중합체 필름의 표면상에 연잎 구조물과 유사한 마이크로 돌기를 만들어 주었다. 표면 구조와 소수성도, 항혈전 효과 등을 시험했으며, 결정화도와 탄성회복률 등의 물리적 특성도 분석하였다. 그 결과 비용매와 메틸렌클로라이드의 혼합 부피비 1:2에서 연잎표면과 유사한 최적의 효과를 얻었으며, 이때 수접촉각은 $124^{\circ}$였다. 혈소판 부착시험에서는 처리하지 않는 군에 비해 약 10%만 부착되는 효과를 확인할 수 있었다.

Surface and Chemical Properties of Surface-Modified UHMWPE Powder and Mechanical and Thermal Properties of Its Impregnated PMMA Bone Cement V. Effect of Silane Coupling Agent on the Surface Modification of UHMWPE Powder

  • Yang Dae Hyeok;Yoon Goan Hee;Shin Gyun Jeong;Kim Soon Hee;Rhee John M.;Khang Gilson;Lee Hai Bang
    • Macromolecular Research
    • /
    • 제13권2호
    • /
    • pp.120-127
    • /
    • 2005
  • Conventional poly(methyl methacrylate) (PMMA) bone cement has been widely used as an useful biopolymeric material to fix bone using artificial prostheses. However, many patients had to be reoperated, due to the poor mechanical and thermal properties of conventional PMMA bone cement, which are derived from the presence of unreacted MMA liquid, the shrinkage and bubble formation that occur during the curing process of the bone cement, and the high curing temperature ($above 100^{\circ}C$) which has to be used. In the present study, a composite PMMA bone cement was prepared by impregnating conventional PMMA bone cement with ultra high molecular weight polyethylene (UHMWPE) powder, in order to improve its mechanical and thermal properties. The UHMWPE powder has poor adhesion with other biopolymeric materials due to the inertness of the powder surface. Therefore, the surface of the UHMWPE powder was modified with two kinds of silane coupling agent containing amino groups (3-amino propyltriethoxysilane ($TSL 8331^{R}$) and N-(2-aminoethyl)-3-(amino propyltrimethoxysilane) ($TSL 8340^{R}$)), in order to improve its bonding strength with the conventional PMMA bone cement. The tensile strengths of the composite PMMA bone cements containing $3 wt\%$ of the UHMWPE powder surface-modified with various ratios of $TSL 8331^{R}$ and $TSL 8340^{R}$ were similar or a little higher than that of the conventional PMMA bone cement. However, no significant difference in the tensile strengths between the conventional PMMA bone cement and the composite PMMA bone cements could be found. However, the curing temperatures of the composite PMMA bone cements were significantly decreased.

Growth and Migration of BALB/3T3 Fibroblast Cells on Nano-engineered Silica Beads Surface

  • Kim, Jihee;Chandra, Prakash;Yang, Jiyoon;Rhee, Seog Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3715-3721
    • /
    • 2013
  • In this study, the behavior of cells on the modified surface, and the correlation between the modified substrates and the response of cells is described. A close-packed layer of nano-sized silica beads was prepared on a coverslip, and the adhesion, proliferation, and migration of BALB/3T3 fibroblast cells on the silica layer was monitered. The 550 nm silica beads were synthesized by the hydrolysis and condensation reaction of tetraethylorthosilicate in basic solution. The amine groups were introduced onto the surfaces of silica particles by treatment with 3-aminopropyltrimethoxysilane. The close-packed layer of silica beads on the coverslip was obtained by the reaction of the amine-functionalized silica beads and the (3-triethoxysilyl)propylsuccinic anhydride treated coverslip. BALB/3T3 fibroblast cells were loaded on bare glass, APTMS coated glass, and silica bead coated glass with the same initial cell density, and the migration and proliferation of cells on the substrates was investigated. The cells were fixed and stained with antibodies in order to analyze the changes in the actin filaments and nuclei after culture on the different surfaces. The motility of cells on the silica bead coated glass was greater than that of the cells cultured on the control substrate. The growth rate of cells on the silica bead coated glass was slower than that of the control. Because the close-packed layer of silica beads gave an embossed surface, the adhesion of cells was very weak compared to the smooth surfaces. These results indicate that the adhesion of cells on the substrates is very important, and the actin filaments might play key roles in the migration and proliferation of cells. The nuclei of the cells were shrunk on the weakly adhered surfaces, and the S1 stage in which DNA is duplicated in the cell dividing processes might be retarded. As a result, the rate of proliferation of cells was decreased compared to the smooth surface of the control. In conclusion, the results described here are very important in the understanding of the interaction between implanted materials and biosystems.

355nm 펄스 레이저를 이용한 구리 표면의 소수성 개질에 관한 연구 (A Study on Fabrication of Hydrophobic Modification on the Surface of Copper using 355nm-Pulsed Laser)

  • 윤단희;강보석;박준한;곽청렬;신보성
    • 마이크로전자및패키징학회지
    • /
    • 제23권4호
    • /
    • pp.101-105
    • /
    • 2016
  • 최근 자연모방을 이용한 소수성 표면 가공이 많은 관심을 끌고 있다. 대표적인 가공 방법으로 기계적 가공, 포토리소그래피 가공, 레이저를 이용한 공정이 있다. 본 논문에서는 구리필름에 UV 펄스 레이저를 직접 조사해 마이크로 그루브를 형성하고 상온에서의 산화를 통해 표면의 거칠기를 증가시켜 소수성 표면을 제작하였다. 패턴 생성 뒤 일정 시간 산화를 시킨 후에 측정된 접촉각은 산화를 시키기 전보다 약 $30{\sim}70^{\circ}$까지 증가함을 보인다. 본 연구 결과를 통해서 화학적인 처리과정 없이 보다 안정한 소수성 표면을 제조할 수 있음을 확인하였다.

고출력 저에너지 이온빔을 이용한 InP(100) 표면의 나노 패턴형성 (Fabrication of Nanostructures on InP(100) Surface with Irradiation of Low Energy and High Flux Ion Beams)

  • 박종용;최형욱;;정연식;최원국
    • 한국재료학회지
    • /
    • 제15권6호
    • /
    • pp.361-369
    • /
    • 2005
  • InP(100) crystal surface was irradiated by ion beams with low energy $(180\~225\;eV)$ and high flux $(\~10^{15}/cm^2/s)$, Self-organization process induced by ion beam was investigated by examining nano structures formed during ion beam sputtering. As an ion source, an electrostatic closed electron Hall drift thruster with a broad beam size was used. While the incident angle $(\theta)$, ion flux (J), and ion fluence $(\phi)$ were changed and InP crystal was rotated, cone-like, ripple, and anistropic nanostrucuture formed on the surface were analyzed by an atomic force microscope. The wavelength of the ripple is about 40 nm smaller than ever reported values and depends on the ion flux as $\lambda{\propto}J^{-1/2}$, which is coincident with the B-H model. As the incident angle is varied, the root mean square of the surface roughness slightly increases up to the critical angle but suddenly decreases due to the decrease of sputtering yield. By the rotation of the sample, the formation of nano dots with the size of $95\~260\;nm$ is clearly observed.

표면 조도에 따른 이온성 고분자-금속 복합체의 구동특성 (Effect of Surface Roughness on the Actuation of Ionic Polymer Metal Composites)

  • 정성희;송점식;김규석;이석민;문무성
    • 공업화학
    • /
    • 제17권6호
    • /
    • pp.586-590
    • /
    • 2006
  • 전기활성 고분자로서 이온성고분자-금속복합체(Ionic Polymer metal Composites, IPMC)는 화학적 환원방법으로 비교적 쉽게 제조하여 낮은 구동전압에서도 큰 변위를 낼 수 있는 유연성을 지니는 스마트 소재(soft smart material) 중의 하나이다. 제조 시의 화학적 환원방법은 용액 내에서 반응시킴으로써 결과적으로 형성되는 다공성 고분자 막의 표면의 거칠기 때문에 구동체로서의 IPMC의 동작특성에 결함을 줄 수 있다. 따라서 본 연구에서는 IPMC의 표면의 거칠기에 대한 구동 특성을 비교하고 표면 조도를 향상시키는 방안으로 표면 이온빔 보조 증착법으로 표면을 개질하였다. 이러한 표면 개질 효과로 인해 IPMC 전극의 표면 저항을 낮추고 반응 속도를 증가시킬 수 있었고, 표면 조도, 모폴로지, 구동력 등을 측정하여 향상된 구동 현상을 나타내는 제조방법에 대한 연구를 하였다.

Surface Modification of a Li[Ni0.8Co0.15Al0.05]O2 Cathode using Li2SiO3 Solid Electrolyte

  • Park, Jin Seo;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권2호
    • /
    • pp.101-106
    • /
    • 2017
  • $Li_2SiO_3$ was used as a coating material to improve the electrochemical performance of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$. $Li_2SiO_3$ is not only a stable oxide but also an ionic conductor and can, therefore, facilitate the movement of lithium ions at the cathode/electrolyte interface. The surface of the $Li_2SiO_3$-coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was covered with island-type $Li_2SiO_3$ particles, and the coating process did not affect the structural integrity of the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ powder. The $Li_2SiO_3$ coating improved the discharge capacity and rate capability; moreover, the $Li_2SiO_3$-coated electrodes showed reduced impedance values. The surface of the lithium-ion battery cathode is typically attacked by the HF-containing electrolyte, which forms an undesired surface layer that hinders the movement of lithium ions and electrons. However, the $Li_2SiO_3$ coating layer can prevent the undesired side reactions between the cathode surface and the electrolyte, thus enhancing the rate capability and discharge capacity. The thermal stability of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was also improved by the $Li_2SiO_3$ coating.

Effect of different surface treatments on the shear bond strength of luting cements used with implant-supported prosthesis: An in vitro study

  • Degirmenci, Kubra;Saridag, Serkan
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권2호
    • /
    • pp.75-82
    • /
    • 2020
  • PURPOSE. The aim of this study was to investigate the shear bond strength of luting cements used with implant retained restorations on to titanium specimens after different surface treatments. MATERIALS AND METHODS. One hundred twenty disc shaped specimens were used. They were divided into three groups considering the surface treatments (no treatment, sandblasting, and oxygen plasma treatment). Water contact angle of specimens were determined. The specimens were further divided into four subgroups (n=10) according to applied cement types: polycarboxylate cement (Adhesor Carbofine-AC), temporary zinc oxide free cement (Temporary CementZOC), non eugenol provisional cement for implant retained prosthesis (Premier Implant Cement-PI), and non eugenol acrylic-urethane polymer based provisional cement for implant luting (Cem Implant Cement-CI). Shear bond strength values were evaluated. Two-way ANOVA test and Regression analysis were used to statistical analyze the results. RESULTS. Overall shear bond strength values of luting cements defined in sandblasting groups were considerably higher than other surfaces (P<.05). The cements can be ranked as AC > CI > PI > ZOC according to shear bond strength values for all surface treatment groups (P<.05). Water contact angles of surface treatments (control, sandblasting, and plasma treatment group) were 76.17° ± 3.99, 110.45° ± 1.41, and 73.80° ± 4.79, respectively. Regression analysis revealed that correlation between the contact angle of different surfaces and shear bond strength was not strong (P>.05). CONCLUSION. The retentive strength findings of all luting cements were higher in sandblasting and oxygen plasma groups than in control groups. Oxygen plasma treatment can improve the adhesion ability of titanium surfaces without any mechanical damage to titanium structure.