• Title/Summary/Keyword: Surface marker method

Search Result 80, Processing Time 0.025 seconds

Numerical Study on Wave Resistance of a High Speed Catamaran (고속 카타마란의 조파저항 수치연구)

  • 곽승현
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.29-34
    • /
    • 2000
  • This paper describes a numerical study to make clear the characteristics of flow around a high speed catamaran hull advancing on calm water. The simulation is carried out at Froude number of 0.5 with a separation to length rations of 0.2 to 0.5. To simulate the flows, the Navier-Stokes solver is employed in which the free surface condition is included. Computations are performed in a rectangular grid system based grid system based on the Marker & Cell method. For the validation, the computation results are compared with the experiments.

  • PDF

Coupled Analysis of Heat Transfer, Fluid Flow and Solidification in the Filling of Castings (용탕충진과정에 있어서 열 및 유동을 포함한 2차원 응고해석)

  • Kim, Sung-Bin;Cho, In-Sung;Kim, Jin-Su;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.424-431
    • /
    • 1993
  • A Numerical technique has been developed for the coupled heat transfer and fluid flow calculation during the casting process. In this method the SMAC technique was coupled with the concept of Volume of Fluid(VOF) to calculate melt free surface and velocity profiles within the melt, and the Energy Marker method coupled with the finite difference method was proposed for the convective and conductive heat transfer analysis in the casting. When comparing numerical calculations with experimental observations, a close correlation was evident. It has been shown that this technique is useful for proper gating and casting design, especially for thin-walled castings.

  • PDF

Robust Dynamic Projection Mapping onto Deforming Flexible Moving Surface-like Objects (유연한 동적 변형물체에 대한 견고한 다이내믹 프로젝션맵핑)

  • Kim, Hyo-Jung;Park, Jinho
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.897-906
    • /
    • 2017
  • Projection Mapping, also known as Spatial Augmented Reality(SAR) has attracted much attention recently and used for many division, which can augment physical objects with projected various virtual replications. However, conventional approaches towards projection mapping have faced some limitations. Target objects' geometric transformation property does not considered, and movements of flexible objects-like paper are hard to handle, such as folding and bending as natural interaction. Also, precise registration and tracking has been a cumbersome process in the past. While there have been many researches on Projection Mapping on static objects, dynamic projection mapping that can keep tracking of a moving flexible target and aligning the projection at interactive level is still a challenge. Therefore, this paper propose a new method using Unity3D and ARToolkit for high-speed robust tracking and dynamic projection mapping onto non-rigid deforming objects rapidly and interactively. The method consists of four stages, forming cubic bezier surface, process of rendering transformation values, multiple marker recognition and tracking, and webcam real time-lapse imaging. Users can fold, curve, bend and twist to make interaction. This method can achieve three high-quality results. First, the system can detect the strong deformation of objects. Second, it reduces the occlusion error which reduces the misalignment between the target object and the projected video. Lastly, the accuracy and the robustness of this method can make result values to be projected exactly onto the target object in real-time with high-speed and precise transformation tracking.

A Study on the Bow Hull Form Design of Full Ship Considering the Nonlinear Waves (비선형파를 고려한 비대선의 선수선형설계에 관한 연구)

  • Yu, Jin-Won;Lee, Young-Gill;Choi, Si-Young;Choi, Young-Chan;Jeong, Kwang-Leol;Ha, Yoon-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.671-679
    • /
    • 2010
  • This paper introduces a new hull form design method for the bow of a full ship, by actively applying the relation between the fore-body hull form and its wave resistance characteristics. For the hull form design, the Series 60($C_B=0.8$) hull is chosen as the parent ship, and Kracht's charts are used to determine the parameters of the bulbous bow in the early stages of hull form design. Several hull forms have been tested in order to obtain enough hull form variations with various bow shapes and design parameters in the search of the best design. In order to investigate the resistance characteristics of the designed hull forms, numerical simulations with corresponding model tests have been rigorously performed. For the numerical simulations, the Marker-density method is employed to track the nonlinear phenomena of the free surface(program IUBW). Model tests have also been performed to achieve an improved research performance using the designed hulls. Both numerical and experimental results show that the wave resistance of the hull forms can be effectively diminished if the bows are designed using the method introduced in this research. It is also expected that this research can facilitate better productivity in hull form design, especially at the preliminary design stage of a full ship type vessel.

Qualitative and quantitative determination of oleanolic acid in a scalp tonic products by HPLC using response surface methodology for extraction optimization

  • Cai, Lin Xi;Cho, Chong Woon;Zhao, Yan;Kang, Jong Seong;Kim, Kyung Tae;Jung, Sang-Hun
    • Analytical Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.48-55
    • /
    • 2019
  • The simple and effective analytical method for the quality control of a novel scalp tonic formulation has been developed and optimized in terms of HPLC conditions and sample preparation method, meanwhile, the optimization of preparation condition was using response surface methodology (RSM) based on central composite design (CCD). Oleanolic acid was selected as marker compound because of its bioactivities for alopecia therapy. The developed analytical method and extraction condition were successfully qualified. Coefficient of determination ($r^2$) for the calibration was 0.9997 with a line passing through the origin point in the range of 0.1-100 mg/mL. The limit of detection (LOD) and the limit of quantitation (LOQ) were 17.5 ng/mL and 55.0 ng/mL, respectively. The intra-day and inter-day precision of the method were 0.5-1.4 % and 0.7-1.8 % in relative standard deviation, respectively, while those accuracy were 99.5-100.9 % and 100.0-102.2 %, respectively. The repeatability of oleanolic acid in samples ranged of 0.3-1.9 % based on peak area and 0.3-0.7 % for retention time. Recoveries from samples were 95.0-99.4 % with lower than 1.8 % in relative standard deviation. Overall, the developed analytical method will be used for quality control of this commercial scalp tonic products successfully.

Numerical Simulations of Breaking Waves above a Two-Dimensional Submerged Circular Cylinder

  • Kim, Seung-Nam;Lee, Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.2
    • /
    • pp.50-61
    • /
    • 2001
  • In this paper, nonlinear interactions between water waves and a horizontally submerged circular cylinder are numerically simulated. In this case, the nonlinear interactions between them generated a wave breaking phenomenon. The wave breaking phenomenon plays an important role in the wave farce. Negative drifting forces are raised at shallow submerged cylinders under waves because of the wave breaking phenomenon. For the numerical simulation, a finite difference method based on the unsteady incompressible Navier-Stokes equations and the continuity equation is adopted in the rectangular grid system. The free surface is simulated with a computational simulation method of two-layer flow by using marker density. The results are compared with some existing computational and experimental results.

  • PDF

A Study on the 2-D Melt Fluid Flow Analysis by SMAC Method (SMAC법을 이용한 2차원 탕류해석에 관한 연구)

  • Choi, Jeong-Kil;Kim, Seoung-Bin;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.12 no.1
    • /
    • pp.40-50
    • /
    • 1992
  • A computer simulation of mold filling has been performed in order to analyze the fluid flow pattern in a mold cavity since casting defects such as cold shut formation, entrapment of air or gas, and inclusions are closely related to the fluid flow phenomena. The flow of molten metal entering the mold cavity with free surface has been modeled by SMAC(Simplified Marker and Cell) method. Two dimensional analysis was carried out on plate shape castings with two types of gate system. The calculation results were compared with those of water modeling experiments and showed relatively good agreement.

  • PDF

MEASUREMENT OF NUCLEAR FUEL ROD DEFORMATION USING AN IMAGE PROCESSING TECHNIQUE

  • Cho, Jai-Wan;Choi, Young-Soo;Jeong, Kyung-Min;Shin, Jung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.133-140
    • /
    • 2011
  • In this paper, a deformation measurement technology for nuclear fuel rods is proposed. The deformation measurement system includes a high-definition CMOS image sensor, a lens, a semiconductor laser line beam marker, and optical and mechanical accessories. The basic idea of the proposed deformation measurement system is to illuminate the outer surface of a fuel rod with a collimated laser line beam at an angle of 45 degrees or higher. For this method, it is assumed that a nuclear fuel rod and the optical axis of the image sensor for observing the rod are vertically composed. The relative motion of the fuel rod in the horizontal direction causes the illuminated laser line beam to move vertically along the surface of the fuel rod. The resulting change of the laser line beam position on the surface of the fuel rod is imaged as a parabolic beam in the high-definition CMOS image sensor. An ellipse model is then extracted from the parabolic beam pattern. The center coordinates of the ellipse model are taken as the feature of the deformed fuel rod. The vertical offset of the feature point of the nuclear fuel rod is derived based on the displacement of the offset in the horizontal direction. Based on the experimental results for a nuclear fuel rod sample with a formation of surface crud, an inspection resolution of 50 ${\mu}m$ is achieved using the proposed method. In terms of the degree of precision, this inspection resolution is an improvement of more than 300% from a 150 ${\mu}m$ resolution, which is the conventional measurement criteria required for the deformation of neutron irradiated fuel rods.

Optimization of Extraction of Marker Compounds from Red Ginsengs by Accelerated Solvent Extraction Using Response Surface Methodology (반응표면분석법을 사용한 가속 용매 추출에 의한 홍삼 지표성분의 추출 최적화)

  • Kim, Eun Ok;Xu, Jiu Liang;Um, Byung Hun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.8
    • /
    • pp.1162-1169
    • /
    • 2016
  • A new method based on accelerated solvent extraction (ASE) combined with response surface methodology (RSM) has been developed for optimization of the extraction of ginsenoside [Rb1, Rg1, and Rg3(20S)], total phenolics, and benzopyrene in red ginseng. The RSM method, based on a five level and two variable central composite design, was employed to obtain the optimal combination of extraction conditions. In brief, ginsenosides Rb1, Rg1, and Rg3(20S) and total phenolics with undetectable benzopyrene were optimally extracted with 50% ethanol as an extraction solvent, extraction temperature of $158^{\circ}C$, extraction time of 20 min, extraction pressure of 2,500 psi, flush volume of 60%, and one extraction cycle. The contents of ginsenosides and total phenolics in red ginseng extracted by ASE under optimum conditions were significantly higher than those extracted by sonication and reflux extraction.

Numerical Simulation on the Greenwater Impact Load of Offshore Structure in Regular Waves (규칙파 중 해양구조물의 갑판침입수 충격하중에 관한 수치시뮬레이션)

  • Kang, Ui-Ha;Lee, Young-Gill;Yang, In-Jun;Kim, Ki-Yong;Joo, Young-Seok;Park, Jeong-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.492-500
    • /
    • 2017
  • In the study, numerical simulation on the greenwater impact load of free surface offshore structure in the regular waves using fixed cartesian grid system and Modified Marker-Density (MMD) method were carried out and the results were reviewed. In order to compare numerical simulation and experimental results, the FPSO with the scale ratio of 1/100 model ship with fixed rectangular deck was selected and turbulence characteristic of the flow was considered by applying the Sub-Grid Scale (SGS) in laminar flow. As a result, it is reviewed how the greenwater impact load inflowed from bow in regular headsea wave influence the flow on the deck and the flow characteristic by numerical simulation and the experiment results were compared and reviewed. Based on this study, it would be useful to numerically study the effect of greenwater on offshore structure.