• 제목/요약/키워드: Surface mapping

Search Result 500, Processing Time 0.026 seconds

Inverse Finite Element Analysis of Autobody Structures with a Direct Mesh Mapping Method for Crash Analysis Considering Forming Effets (직접격자 사상법을 이용한 차체 구조물의 유한요소 역해석 및 성형효과를 고려한 충돌해석)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.457-464
    • /
    • 2002
  • A finite element inverse analysis is utilized to consider forming effects of an S-rail on the assessment of the crashworthiness with small amount of computation time. A crash analysis can be directly performed after the inverse simulation of a forming process without a smoothing or remeshing scheme. The direct mesh mapping method is used to calculate an initial guess from a sliding constraint surface that is extracted from the die and punch set. Analysis results demonstrate that energy absorption of structures is increased when simulation considers forming effects of thickness variation and work hardening. The finite element inverse analysis is proved to be an effective tool in consideration of forming effects for the crash analysis.

Conformal Mapping for Cogging Torque computation in IPM motor (등각 사상법을 이용한 매입형 영구자석 전동기의 코깅토크 해석)

  • Fang, Liang;Kwon, Soon-O;Jung, Jae-Woo;Hong, Jung-Pyo;Ha, Kyung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1204-1206
    • /
    • 2005
  • This paper deals with magnetic field analysis and computation of cogging torque in IPM motor with an analytical method, which is based on the Conformal Mapping technique. The magnetic field is analyzed by solving space harmonic field analysis due to inserted PM magnetizing distribution. Conformal Mapping method is then used for considering the slot opening effect and rotor saliency effect on the air-gap field magnetic distribution. Then, by integrating the field over the stator surface, cogging torque is calculated. The validity of the proposed analytical method is confirmed by comparing the results with 2-D FEA results.

  • PDF

LiDAR-based Mapping Considering Laser Reflectivity in Indoor Environments (실내 환경에서의 레이저 반사도를 고려한 라이다 기반 지도 작성)

  • Roun Lee;Jeonghong Park;Seonghun Hong
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.135-142
    • /
    • 2023
  • Light detection and ranging (LiDAR) sensors have been most widely used in terrestrial robotic applications because they can provide dense and precise measurements of the surrounding environments. However, the reliability of LiDAR measurements can considerably vary due to the different reflectivities of laser beams to the reflecting surface materials. This study presents a robust LiDAR-based mapping method for the varying laser reflectivities in indoor environments using the framework of simultaneous localization and mapping (SLAM). The proposed method can minimize the performance degradations in the SLAM accuracy by checking and discarding potentially unreliable LiDAR measurements in the SLAM front-end process. The gaps in point-cloud maps created by the proposed approach are filled by a Gaussian process regression method. Experimental results with a mobile robot platform in an indoor environment are presented to validate the effectiveness of the proposed methodology.

Experimental Validation of the Radial Mapping Rule in Bounding Surface Plasticity Model (경계면 소성 모델의 방사 사상 법칙에 대한 실험적 검토)

  • Jung, Young-Hoon;Lee, Ju-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.171-181
    • /
    • 2013
  • The radial mapping rule in bounding surface model was experimentally investigated by analyzing the drained stress probe tests on Chicago clays. The experimental data obtained from 10 drained stress probe paths were analyzed to calculate the directions of the plastic strain increments. The anisotropic bounding surface model was adopted to represent a bounding yield surface which resides in the pre-consolidation yield stress of undisturbed clays. The projection origins were estimated by finding the interceptions of the straight lines passing through the current stress point and the imaginary yield stress point on the bounding surface. The results show that the projection origin is not fixed at a point but moves toward the direction of the stress probe path after it is established around the initial stress point.

Land cover classification using LiDAR intensity data and neural network

  • Minh, Nguyen Quang;Hien, La Phu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.429-438
    • /
    • 2011
  • LiDAR technology is a combination of laser ranging, satellite positioning technology and digital image technology for study and determination with high accuracy of the true earth surface features in 3 D. Laser scanning data is typically a points cloud on the ground, including coordinates, altitude and intensity of laser from the object on the ground to the sensor (Wehr & Lohr, 1999). Data from laser scanning can produce products such as digital elevation model (DEM), digital surface model (DSM) and the intensity data. In Vietnam, the LiDAR technology has been applied since 2005. However, the application of LiDAR in Vietnam is mostly for topological mapping and DEM establishment using point cloud 3D coordinate. In this study, another application of LiDAR data are present. The study use the intensity image combine with some other data sets (elevation data, Panchromatic image, RGB image) in Bacgiang City to perform land cover classification using neural network method. The results show that it is possible to obtain land cover classes from LiDAR data. However, the highest accurate classification can be obtained using LiDAR data with other data set and the neural network classification is more appropriate approach to conventional method such as maximum likelyhood classification.

Underwater Magnetic Field Mapping Using an Autonomous Surface Vehicle (자율수상선을 이용한 수중 자기장 지도 작성)

  • Jung, Jongdae;Park, Jeonghong;Choi, Jinwoo
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.190-197
    • /
    • 2018
  • Geomagnetic field signals have potential for use in underwater navigation and geophysical surveys. To map underwater geomagnetic fields, we propose a method that exploits an autonomous surface vehicle. In our system, a magnetometer is rigidly attached to the vehicle and not towed by a cable, minimizing the system's size and complexity but requiring a dedicated calibration procedure due to magnetic distortion caused by the vehicle. Conventional 2D methods can be employed for the calibration by assuming the horizontal movement of the magnetometer, whereas the proposed 3D approach can correct for horizontal misalignment of the sensor. Our method does not require a supporting crane system to rotate the vehicle, and calibrates and maps simultaneously by exploiting data obtained from field operation. The proposed method has been verified experimentally in inland waters, generating a magnetic field map of the test area that is of much higher resolution than the public magnetic field data.

Restoration of 3-Dimensional Surface Based on Binocular Stereo Vision (양안 입체시에 의한 3차원 표면의 복원)

  • Jung, Nam-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.3
    • /
    • pp.112-119
    • /
    • 2005
  • In this paper, a model of neural circuit was proposed, which abstracts the depth information in two images gotten from right and left retinas. The proposed neural circuit corresponds to binocular stereo vision based on psychologic and physiological knowledge, and we examine a restoration method of three-dimensional surface. In case of drawing a disparity based on characteristics of images, we can not abstract the depth information correctly if resemblant characteristics are repeated on the boundary region of an object. A binocular disparity is decided in a model of neural circuit by abstraction, synthesis, and correction of a disparity. And we propose a method which restores three-dimensional shape by correcting a depth information, and also restores a three-dimensional surface by mapping a left input image on the restored three-dimensional shape. And we confirmed that the computation time for disparity abstraction can be greatly reduced through the simulation.

  • PDF

The Potential of Satellite SAR Imagery for Mapping of Flood Inundation

  • Lee, Kyu-Sung;Hong, Chang-Hee;Kim, Yoon-Hyoung
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.128-133
    • /
    • 1998
  • To assess the flood damages and to provide necessary information for preventing future catastrophe, it is necessary to appraise the inundated area with more accurate and rapid manner. This study attempts to evaluate the potential of satellite synthetic aperture radar (SAR) data for mapping of flood inundated area in southern part of Korea. JERS L-band SAR data obtained during the summer of 1997 were used to delineate the inundated areas. In addition, Landsat TM data were also used for analyzing the land cover condition before the flooding. Once the two data sets were co-registered, each data was separately classified. The water surface areas extracted from the SAR data and the land cover map generated using the TM data were overlaid to determine the flood inundated areas. Although manual interpretation of water surfaces from the SAR image seems rather simple, the computer classification of water body requires clear understanding of radar backscattering behavior on the earth's surfaces. It was found that some surface features, such as rice fields, runaway, and tidal flat, have very similar radar backscatter to water surface. Even though satellite SAR data have a great advantage over optical remote sensor data for obtaining imagery on time and would provide valuable information to analyze flood, it should be cautious to separate the exact areas of flood inundation from the similar features.

  • PDF

Electrical Imaging of Thin Film Surface by Scanning Maxwell-stress Microscopy (주사형 맥스웰응력 현미경에 의한 표면의 전기적 이미지)

  • Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1508-1510
    • /
    • 1998
  • Recent development of scanning probe microscope techniques has made it possible to investigate, not only microscopic surface topography, but also physical and chemical properties on the nanometer-scale. The scanning Maxwell-stress microscopy (SMM) is surface characterization tool capable of mapping both the surface topography and electrical properties, such as surface potential, surface charge dielectric constant of thin films with a nanometer-scale resolution by means of the AC voltage driven oscillation of metal coated cantilever. In this study, we observed the surface potential distribution and molecular ordering in thin films. We have demonstrated that the SMM can be used for imaging surface potential distribution over the film surface and also be used for detecting surface changes in thin films. This is first step towards the understanding of electrical phenomena in organic and inorganic materials, biological system with SMM.

  • PDF

A Study on Detailed Structural Variation of Diamond-like Carbon Thin Film by a Novel Raman Mapping Method (라만 맵핑 방식을 사용한 다이아몬드상 카본박막의 미세구조변화에 관한 연구)

  • Choi, Won-Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.618-623
    • /
    • 2006
  • Hydrogenated Diamond-like carbon (DLC) films were prepared by the radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas. The wear track on the DLC films was examined after the ball-on disk (BOD) measurement with a Raman mapping method. The BOD measurement of the DLC films was performed for 1 to 3 hours with a 1-hour step time. The sliding traces on the hydrogenated DLC film after the BOD measurement were also observed using an optical microscope. The surface roughness and cross-sectional images of the wear track were obtained using an atomic force microscope (AFM). The novel Raman mapping method effectively shows the graphitization of DLC films of $300{\mu}m\times300{\mu}m$ area according to the sliding time by G-peak positions (intensities) and $I_D/I_G$ ratios.