DOI QR코드

DOI QR Code

Experimental Validation of the Radial Mapping Rule in Bounding Surface Plasticity Model

경계면 소성 모델의 방사 사상 법칙에 대한 실험적 검토

  • Jung, Young-Hoon (Dept. of Civil Engineering, Kyung Hee University) ;
  • Lee, Ju-Hyung (Geotechnical engineering research division, SOC Research Institute, Korea Institute of Construction Technology)
  • 정영훈 (경희대학교 공과대학 사회기반시스템공학과) ;
  • 이주형 (한국건설기술연구원 SOC성능연구소 Geo-인프라연구실)
  • Received : 2012.12.24
  • Accepted : 2012.12.27
  • Published : 2013.01.31

Abstract

The radial mapping rule in bounding surface model was experimentally investigated by analyzing the drained stress probe tests on Chicago clays. The experimental data obtained from 10 drained stress probe paths were analyzed to calculate the directions of the plastic strain increments. The anisotropic bounding surface model was adopted to represent a bounding yield surface which resides in the pre-consolidation yield stress of undisturbed clays. The projection origins were estimated by finding the interceptions of the straight lines passing through the current stress point and the imaginary yield stress point on the bounding surface. The results show that the projection origin is not fixed at a point but moves toward the direction of the stress probe path after it is established around the initial stress point.

본 연구에서는 시카고 점토에 대해 실시한 배수 응력 경로 시험결과를 분석하여 경계면 모델의 방사 사상 법칙을 검토하였다. 서로 다른 방향을 가진 총 10개의 응력 경로 시험 결과로부터 얻은 응력-변형률 관계를 분석하여 소성변형률 증분을 계산하였고, 이로부터 응력 경로 진행 중 소성 변형률의 방향을 실험적으로 분석하였다. 불교란 시료의 선행 압밀 항복 응력을 고려하여 이방성 경계면 소성 항복면의 위치를 결정하였다. 투영 원점의 위치를 확인하기 위해 경계 항복면 상에서 가상 응력점을 찾았고 현재 응력점과 연결한 직선을 이용하여 투영 원점의 위치를 파악하였다. 경계면 소성 모델에서 투영 원점은 특정 위치에 고정되지 않으며, 초기 응력점 근처에서 형성된 후 재하 방향에 따라 이동한다.

Keywords

References

  1. Al-Tabbaa, A. and Wood, D. M. (1989), "An experimentally based 'bubble' model for clay", Proceedings of NUM0G3, pp.91-99.
  2. Banerjee, P. K., and Yousif, N. B. (1986), "A plasticity model for the mechanical behavior of anisotropically consolidated clay", International Journal of Numerical and Analytical Methods in Geomechanics, Vol.10, No.5, pp.521-541. https://doi.org/10.1002/nag.1610100505
  3. Dafalias, Y. F. (1986), "Bounding surface plasticity: 1. Mathematicalfoundation and hypoplasticity", Journal of Engineering Mechanics,Vol.112, No.9, pp.966-987. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:9(966)
  4. Dafalias, Y. F. and Herrmann, L. R. (1982), "A bounding surface formulation of soil plasticity", Soil Mechanics-Transient and Cyclic Loads, Pande, G. N. and Zienkiewicz, O. C., Eds., John Wiley and Sons.
  5. Dafalias, Y. F. and Popov, E. P. (1975), "A model of nonlinearly hardening materials for complex loadings", Acta Mechanica., Vol.21, pp.173-192. https://doi.org/10.1007/BF01181053
  6. Finno, R. J. and Roboski, J. F. (2005), "Three-dimensional responses of a tied-back excavation through clay", Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.3, pp.273-282. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(273)
  7. Hardin, B. O. and Black, W. L. (1966), "Sand stiffness under various triaxial stresses", Journal of Soil Mechanics and Foundation Division, Vol.92, No.2, pp.27-42.
  8. Jardine, R. J. (1985), Investigations of pile-soil behavior, with special reference to the foundations of offshore structures, Imperial College, University of London.
  9. Jardine, R. J. (1992), "Some observations on the kinematic nature of soil stiffness", Soils and Foundations, Vol.32, No.2, pp.111-124. https://doi.org/10.3208/sandf1972.32.2_111
  10. Jung, Y. -H., Cho, W., and Finno, R. J. (2007), "Defining yield from bender element measurements in triaxial stress probe experiments", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.133, No.7, pp.841-849. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(841)
  11. Jung, Y. -H. and Yune, C. -Y. (2011), "Reappraisal of the anisotropic bounding surface model of small-strain behavior for clays", KSCE Journal of Civil Engineering, Vol.15, No.3, pp.463-472. https://doi.org/10.1007/s12205-011-1112-1
  12. Krieg, R. D. (1975). "A practical two-suraface plasticity theory", Journal of Applied Mechanics, Vol.42, pp.641-646. https://doi.org/10.1115/1.3423656
  13. Stallebrass, S. E. (1990), The Effect of Recent Stress History on the Deformation of Overconsolidated Soils, PhD Thesis, City University, UK.
  14. Tatsuoka, F., Jardine, R. J., Lo Presti, D. C. F., Di Benedetto, H., and Kodaka, T. (1997), "Characterising the pre-failure deformation properties of geomaterials", Proceedings of 14th International Conference on Soil Mechanics and Foundation Engineering, Vol.4, pp.447-482.

Cited by

  1. A new perspective on bounding surface plasticity: The moving projection origin vol.21, pp.3, 2013, https://doi.org/10.1007/s12205-016-0392-x