• 제목/요약/키워드: Surface layer current

검색결과 967건 처리시간 0.029초

Plasma nitriding on chromium electrodeposit

  • Wang Liang;K.S. Nam;Kim, D.;Kim, M.;S.C. Kwon
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.29-30
    • /
    • 2001
  • This paper presents some results of plasma nitriding on hard chromium deposit. The substrates were C45 steel and $30~50{\;}\mu\textrm{m}$ of chromium deposit by electroplating was formed. Plasma nitriding was carried out in a plasma nitriding system with $95NH_3{\;}+{\;}SCH_4$ atmosphere at the pressure about 600 Pa and different temperature from $450^{\circ}C{\;}to{\;}720^{\circ}C$ for various time. Optical microscopy and X-ray diffraction were used to evaluate the characteristics of surface nitride layer formed by nitrogen diffusion from plasma atmosphere inward iCr coating and interface carbide layer formed by carbon diffusion from substrate outward Cr coating. The microhardness was measured using microhareness tester at the load of 100 gf. Corrosion resistance was evaluated using the potentiodynamic measurement in 3.5% NaG solution. A saturated calomel electrode (SiCE) was used as the reference electrode. Fig.1 shows the typical microstructures of top surface and cross-section for nitrided and unnitrided samples. Aaer plasma nitriding a sandwich structure was formed consisting of surface nitride layer, center chromium layer and interface carbide layer. The thickness of nitride and carbide layers was increased with the increase of processing temperature and time. Hardness reached about 1000Hv after nitriding while 900Hv for unnitrided hard chromium deposit. X-ray diffraction indicated that surface nitrided layer was a mixture of $Cr_2N$ and CrN at low temperature and erN at high temperature (Fig.2). Anodic polarization curves showed that plasma nitriding can greatly improve the corrosion resistance of chromium e1ectrodeposit. After plasma nitriding, the corrosion potential moved to noble direction and passive current density was lower by 1 to 4 orders of magnitude compared with chromium deposit(Fig.3).

  • PDF

Investigation of the Effect of Acidity and Polyethylene Glycol on Electrochemical Deposition of Trivalent Chromium Ions

  • Phuong, N.V.;Kwon, S.C.;Lee, J.Y.;Kim, M.;Lee, Y.I.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.47-48
    • /
    • 2011
  • The effect of solution acidity and organic additives, polyethylene glycol (PEG), on the trivalent chromium electroplating was systematically investigated in the view point of solution stability, electroreduction of trivalent chromium ions and characterization of deposition layer. It was found that, the concentration of fraction chromium complexes in the trivalent chromium bath containing formic acid is strongly depended on pH value. PEG molecules were stable in trivalent chromium bath containing formic acid via studies on electrospray ionization mass spectrometry (ESI-MS) and UV-Vis. However, the presence of PEG molecules decreased the reductive current of hydrogen evolution, increasing of current efficiency higher about 10 % compared with solutions without PEG. Moreover, PEG additives developed the nodular morphology during electroreduction of trivalent chromium ions with the increase of solution acidity and enhanced its current efficiency by maintaining the consumption of complexant, formic acid, at a low speed. In this study, the effect of solution acidity was emphasized important, there, it controlled the formation of complexes in the solution, cathodic film (CF) during deposition, and properties of deposited layer. By electrochemical quartz crystal microbalance (EQCM), studies show that chromium electrodeposition occurs via the formation of intermediate complexes and adsorption on the cathode surface, which hinder the penetration of ions from bulk solution to the cathode surface.

  • PDF

M/C에 사용되는 내면연삭 휠의 ELID 특성 (ELID characteristics of internal grinding wheel by using M/C)

  • 김성헌;방진영;지흥기;최환;이종찬;정선환;제태진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.999-1002
    • /
    • 1997
  • In this study, in order to set ELID conditions in the internal grinding wheel, the characteristics with the variations of grit size, output voltage and peak current were examined by using conventional machining center(M/C) equipped with electrolytic in-process dressing(EL1D). The initial working voltage was lowered and the working current was high with increasing grit size. The insulating layer thickness increased, as the final voltage increased with the output voltage and peak current. The initial wear rate of the wheel machined with ELID were measured indirectly by using surface roughness tracer. The initial wear rate of the wheel with ELID increased along with high grit size. In case that the grit size with ELID was low, the output voltage and peak current had to be increased to increase the insulating layer thickness. In case of the high grit size, the output voltage and the peak current were established low, which made the insulating layer thickness decreased.

  • PDF

전류제어가 가능한 AIP-PVD법으로 증착된 TiMoN 코팅층 특성평가 (Characteristic Evaluation of TiMoN Coating Layer Deposited by Current Control available AIP-PVD Method)

  • 신현정;김동배;김성철;김남수
    • 열처리공학회지
    • /
    • 제32권5호
    • /
    • pp.224-229
    • /
    • 2019
  • PVD coating is a technology that can be applied to various industries, and is widely used for processing molds and machinery, improving performance of core parts, and extending the life. Therefore, there is a need for a research on a device and a process technology that can adjust the performance to suit each application. In this study, a PVD coating device with ion density control was used to deposit a coating layer on SKD 11, a cold die steel, with magnetron currents of 1 A, 2 A, 3 A at arc currents of 80 A, 100 A, 130 A. It examined the mechanical properties for each condition. Increasing the arc current and magnetron current could improve the thickness, adhesion, and hardness of the coating layer. Especially, When the magnetron current was high, it suppressed the droplets that could be generated by the high arc current, showing excellent surface uniformity and adhesion of the coating layer.

Studies on Electrical Double Layer Capacitor Based on Mesoporous Activated Carbon

  • Meigen, Deng;Yihong, Feng;Bangchao, Yang
    • Carbon letters
    • /
    • 제6권2호
    • /
    • pp.86-88
    • /
    • 2005
  • Mesoporous activated carbon (AC) was prepared from aged petroleum coke through chemical activation. The AC has a specific surface area of 1733 $m^2/g$ and a mean pore diameter of 2.37 nm. The volume fraction of 2 to 4nm pores is 56.74%. At a current density of 10 mA/$cm^2$, a specific capacitance of 240 F/g is achieved representing the use factor of the surface area of 69.2%. And the electrical double layer capacitor (EDLC) based on the AC shows an excellent power performance. This result suggests that the presence of high fraction of mesopores can effectively increase the adsorption efficiency of the specific surface area of the AC and enhance the power performance of EDLC based on the efficient surface area of the AC.

  • PDF

PTA법에 의한 Al 합금표면의 Si 합금층 형성과 내마모성 개선 (Improvement of Wear Resistance and Formation of Si Alloyed Layer on Aluminum Alloy by PTA Process)

  • 박성두;이영호
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.134-143
    • /
    • 1997
  • The formation of thick alloyed layer with high Si content have been investigated on the surface of Al alloy (A5083) plate by PTA process with Si powder. Hardening characteristics and wear resistance of alloyed layer was examined in relation to the microstructure of alloyed layer. Thick hardened layer in mm-order thickness on the surface of A5083 plate can be formed by PTA process with wide range of process condition by using Si powder as alloying element because of eutectic reaction of Al-Si binary alloy. High temperature and rapid solidification rate of molten pool, which are features of PTA process, enable the formation of high Si content alloyed layer with uniform distribution of fine primary Si paticle. High plasma arc current was beneficial to make the alloyed layer with smooth surface appearance in wide range of powder feeding rate, because enough volume of molten pool was necessary make alloyed layer. Uniform dispersion of fine primary Si particle with about 30${\mu}{\textrm}{m}$ in particle size can be obtained in layer with Si content ranging from 30 to 50 mass %. Hardness of alloyed layer increased with increasing Si content, but increasing rate of hardness differed with macrostructure of alloyed layer. Wear resistance of alloyed layer depended on $V_{si}$(volume fraction of primary Si) and was remarkably improved to two times of base metal at 20-30% $V_{si}$ without cracking, but no more improvement was obtained at larger $V_{si}$.

  • PDF

1992년 울릉도 북서부해역에서 관측된 난수성 소용돌이의 구조특성 (The Characteristics of Structure of Warm Eddy Observed to the Northwest of Ullungdo in 1992)

  • 신홍렬;변상경
    • 한국해양학회지
    • /
    • 제30권1호
    • /
    • pp.39-56
    • /
    • 1995
  • 1992년 3월부터 6월까지 속초앞 해역에서 동일한 난수성 소용돌이가 계속 관측되 었다. 이 난수성 소용돌이는 1991년에 형성되어 속초앞 해역에서 월동을 한 후 1992년 4~6월에는 약간 북상하였다. 3월에 관측되었을 때 소용돌이의 크기는 직경이 약 160km, 수심 약 330 m 였고, 상층 내부에 약 1$0^{\circ}C$, 34.2 psu의 균질층(혼합층)이 최대 폭 약 130 km , 수심 약 230 m 로 존재하고 있었으나 6월에는 약간 축소되었다. 낭수 성 소용돌이 표층의 최대유속은 약 65cm/s였으며, 수심 200 m에서도 약 20cm/s 이상의 큰 유속을 갖고 있었다. 이러한 유속구조는 대체로 지형류 평형을 잘 유지하고 있었으 나, 6월에는 약간의 차이가 나타났다. 또한 동한난류의 표층유속은 50~70 cm/s로 나 타나 소용돌이의 북향류와 비슷했으며, 동한난류는 주로 수심 200m 이내의 상층에서만 존재했다.

  • PDF

저 레이놀즈수에서 정지된 에어포일의 경계층 및 근접 후류 가시화 연구 (Visualization Study on the Boundary Layer and Near-Wake of a Stationary Airfoil at Low Reynolds Numbers)

  • 양재훈;장조원
    • 한국가시화정보학회지
    • /
    • 제4권2호
    • /
    • pp.44-50
    • /
    • 2006
  • A visualization study on the boundary layer and near-wake of an NACA 0012 airfoil was con-ducted in order to investigate the influence of boundary layer behavior on the near-wake at low Reynolds numbers. The present study is investigated at static angles of attack ${\alpha}=0^{\circ},\;3^{\circ},\;6^{\circ}$ and $Re=2.3{\times}10^4,\;3.3{\times}10^4,\;4.8{\times}10^4$ by using a smoke-wire technique. The results of this study show that the laminar boundary layer on the airfoil surface is attached to the surface at ${\alpha}=0^{\circ}$, and that laminar separation of boundary layer on the airfoil surface occurs at ${\alpha}=3^{\circ}$. Furthermore, reattachment of the boundary layer occurs in the case of ${\alpha}=6^{\circ}$. In the current study, the location of the laminar separation point moves upstream as the Reynolds number and the angle of attack increase.

  • PDF

전기적 기법을 통한 플렉서블 OLED 봉지막의 파괴특성 연구 (Fracture Analysis of a $SiN_x$ Encapsulation Layer for Flexible OLED using Electrical Methods)

  • 김혁진;오승하;김성민;김형준
    • 반도체디스플레이기술학회지
    • /
    • 제13권4호
    • /
    • pp.15-20
    • /
    • 2014
  • The fracture analysis of $SiN_x$ layers, which were deposited by low-temperature plasma enhanced chemical vapor deposition (LT-PECVD) and could be used for an encapsulation layer of a flexible organic light emitting display (OLED), was performed by an electrical method. The specimens of metal-insulator-metal (MIM) structure were prepared using Pt and ITO electrodes. We stressed MIM specimen mechanically by bending outward with a bending radius of 15mm repeatedly and measured leakage current through the top and bottom electrodes. We also observed the cracks, were generated on surface, by using optical microscope. Once the cracks were initiated, the leakage current started to flow. As the amount of cracks increased, the leakage current was also increased. By correlating the electrical leakage current in the MIM specimen with the bending times, the amount of cracks in the encapsulation layer, generated during the bending process, was quantitatively estimated and fracture behavior of the encapsulation layer was also closely investigated.

Current Status of Layer Transfer Process in Thin Silicon Solar Cell : a review

  • U. Gangopadhyay;K. Chakrabarty;S.K. Dhungel;Kim, Kyung-Hae;Yi, Jun-Sin;D. Majumdar;H. Saha
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권2호
    • /
    • pp.41-49
    • /
    • 2004
  • Layer transfer process has emerged as a promising tool in the field of thin silicon solar cell technology. This process can use mono-crystalline silicon as a surface for the epitaxial growth of a thin layer of silicon. It requires some sort of surface conditioning of the substrate due to which the surface become suitable for homo-epitaxy and lift off after solar cell fabrication. The successful reuse of substrate has been reported. The use of the conditioned surface without any kind of epitaxial layer growth is also the issue to be addressed. This review paper basically describes the five most cost effective methods on which works are in progress. Several types of possible problems envisaged by different research groups are also incorporated here with necessary discussion. Work in Korea has already started in this area in collaboration IC Design and Fabrication Centre, Jadavpur University, India and that also has been mentioned.