• Title/Summary/Keyword: Surface geometry

Search Result 1,285, Processing Time 0.028 seconds

Fast Delineation of the Depth to Bedrock using the GRM during the Seismic Refaction Survey in Cheongju Granite Area (굴절법 탄성파탐사 현장에서 GRM을 이용한 청주화강암지역 기반암 깊이의 신속한 추정)

  • Lee, Sun-Joong;Kim, Ji-Soo;Lee, Cheol-Hee;Moon, Yoon-Sup
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.615-623
    • /
    • 2010
  • Seismic refraction survey is a geophysical method that delineates subsurface velocity structure using direct wave and critically refracted wave. The generalized reciprocal method(GRM) is an inversion technique which uses travel-time data from several forward and reverse shots and which can provide the geometry of irregular inclined refractors and structures underlain by hidden layer such as low velocity zone and thin layer. In this study, a simple Excel-GRM routine was tested for fast mapping of the interface between weathering layer and bedrock during the survey, with employing a pair of forward and reverse shots. This routine was proved to control the maximum dip of approximately $30^{\circ}C$ and maximum velocity contrast of 0.6, based on the panel tests in terms of dipping angle and velocity contrast for the two-layer inclined models. In contrast with conventional operation of five to seven shots with sufficient offset distance and indoor data analysis thereafter, this routine was performed in the field shortly after data acquisition. Depth to the bedrock provided by Excel-GRM, during the field survey for Cheongju granite area, correlates well with the elevation of the surface of soft rock from the drill core and SPS logging data. This cost-effective routine developed for quickly delineating the bedrock surface in the field survey will be readily applicable to mapping of weathering zone in narrow zone with small variation of elevation of bedrock.

transprosthetic Pressure Gradient after aortic Valve Replacement with Small Sized Prostheses (작은 기계 판막을 이용한 대도액 판막 치환술 후 판막 전후 압력차)

  • Hwang, Kyung-Hwan;Park, Kay-Hyun;Cha, Dae-Won;Jun, Tae-Gook;Park, Pyo-Won;Chae, Hurn
    • Journal of Chest Surgery
    • /
    • v.33 no.2
    • /
    • pp.146-150
    • /
    • 2000
  • background: The prognosis after an aortic valve replacment can be affected significantly by the transprosthetic pressure gradient which is determined mainly by the size of the patients body and the prosthesis used. We analyzed the hemodynamic feature of two relatively new prosthese the ATS and the evensized Medtronic-Hall(M-H) valves by measuring the transprosthetic pressure gradient in the cases where small sizes (23mm or smaller) were used. Material and method: There were 94 patients who received whom aortic valve replacement with prosthesis smaller than 23 mm from October 1994 to June 1998. In these patients the transprosthetic pressure gradient clalculated from the pressure half time during postoperative Dopper echocardiographic examination was compared between the prostheses of different sizes. The body surface area of each patient was also taken into consideration. result: The mean pressure gradient and body surface area in each group were 21.7$\pm$10.2 mmHg and 1.52$\pm$0.14m2 in ATS 19mm 11.4$\pm$6.5 mmHg and 1,57$\pm$0.20m2 in M-H 20mm 15.2$\pm$6.3 mmHg and 1.54$\pm$0.13m2 in ATS 21mm 9.3$\pm$2.5 mmHg and 1.63 $\pm$0.14m2 in M-H 22 mm and 12.9$\pm$5.3 mmHg and 1.69$\pm$0.13m2 in ATS 23mm. Conclusion: The 19mm ATS prosthesis showed significant trasprosthetic pressure gradient which is similar to the values previously reported with other bileaflet prosthesesm Close follow-up was needed in terms of exercise capacity and change in left ventiricular geometry. In patients with small aortic valve annulus the 20mm M-H valve is recomendable as an alternative to 19mm bileaflet valves because it has less pressure gradient with similar outer diameter.

  • PDF

Development of Computer Code for Simulation of Multicomponent Aerosol Dynamics -Uncertainty and Sensitivity Analysis- (다성분 에어로졸계의 동특성 묘사를 위한 전산 코드의 개발 -불확실성 및 민감도 해석-)

  • Na, Jang-Hwan;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.85-98
    • /
    • 1987
  • To analyze the aerosol dynamics in severe accidents of LMFBR, a new computer code entitled MCAD (Multicomponent Aerosol Dynamics) has been developed. The code can treat two component aerosol system using relative collision probability of each particles as sequences of accident scenarios. Coagulation and removal mechanisms incorporating Brownian diffusion and gravitational sedimentation are included in this model. In order to see the effect of particle geometry, the code makes use of the concept of density correction factor and shape factors. The code is verified using the experimental result of NSPP-300 series and compared to other code. At present, it fits the result of experiment well and agrees to the existing code. The input variables included are very uncertain. Hence, it requires uncertainty and sensitivity analysis as a supplement to code development. In this analysis, 14 variables are selected to analyze. The input variables are compounded by experimental design method and Latin hypercube sampling. Their results are applied to Response surface method to see the degree of regression. The stepwise regression method gives an insight to which variables are significant as time elapse and their reasonable ranges. Using Monte Carlo Method to the regression model of LHS, the confidence level of the results of MCAD and their variables is improved.

  • PDF

Interpretation of Electrical Resistivity Tomogram with Contents of Clay Minerals for the Land Creeping Area (점토광물 함유량을 고려한 땅밀림 산사태 지역의 전기비저항 자료의 해석)

  • Kim, Jeong-In;Kim, Ji-Soo;Lee, Sun-Joong;Cho, Kyoung-Seo;Kim, Jong-Woo
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.187-197
    • /
    • 2021
  • Clay mineral content of weathered zone is a key parameter for landslide studies. Electrical resistivity tomography is usually performed to delineate the geometry of complex landslides and to identify the sliding surface. In clay-bearing weathered zone, parallel resistivity Archie equation is employed to investigate the effect of conductivity added (resistivity reduced) by clay minerals of kaolinite and montmorillonite, which is dependent on their specific surface area and cation exchange capacities (CEC). A decrease of overall resistivity and apparent formation factor is observed with increasing pore-water resistivity, significantly in montmorillonite. Formation factor is found decreased with increasing porosity and decreasing cementation factor. Parallel Archie equation was applied to the electrical resistivity data from the test area (Sinjindo-ri, Taean-gun, Chungcheongnam-do, Korea) which experienced land creeping in the year of 2014. A panel test with varying clay-mineral contents provides the best fit section when the theoretical section constructed with the assumed contents approaches the field section, from which the clay-mineral content of the weathered zone is estimated to be approximately 10%. Resistivity interpretation schemes including the clay mineral contents for land creeping studies explored in this paper can be challenged more when porosity, saturation, and pore-water resistivity are provided and they are included in the numerical resistivity modeling.

Numerical study on basal heave stability of a circular vertical shaft constructed in clay (연약 점성토 지반에 시공되는 원형 수직구의 히빙 안정성에 대한 수치해석적 연구)

  • Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.231-245
    • /
    • 2022
  • When vertical shafts are constructed in soft clay with low strength, there is a risk of basal heave, which causes the excavation surface to heave due to the low bearing capacity of the ground against the imbalance of earth pressure at the excavation surface. Methods of deriving a safety factor have been proposed to evaluate the stability against the basal heave. However, there are limitations in that it is difficult to accurately evaluate the heave stability because many assumptions are included in the theoretical derivation. In this study, assuming that a circular vertical shaft is constructed in soft clay, the existing safety factor equation proposed through a theoretical approach was supplemented. Bearing capacity according to the shaft geometry, inhomogeneity of the soil, and the effect of soil plug were considered theoretically and applied in a previous safety factor equation. A three-dimensional numerical analysis was conducted to simulate the occurrence of basal heave and review the supplemented equation through various case studies. Several series of case studies were conducted targeting various factors affecting heave stability. It was verified that the additionally considered characteristics were properly reflected in the supplemented equation. Furthermore, the effects of each factor constituting the safety factor equation were examined using the results of the numerical analysis performed by simulating various cases. It was confirmed that considering the undrained shear strength increment according to depth had the most significant effect on the calculation of the safety factor.

Adsorption Characteristics of Hydrogen in Regular Single-Walled Carbon Nanotube Arrays at Low Temperature (저온에서 규칙적인 단일벽 탄소나노튜브 배열의 수소 흡착 특성)

  • Yang Gon Seo
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.217-226
    • /
    • 2023
  • The amount of hydrogen adsorbed in arrays of single walled carbon nanotubes (SWNTs) was studied as a function of nanotube diameter and distance between the nearest-neighbor nanotubes on square arrangements using a grand canonical Monte Carlo simulation. The influence of the geometry of a triangle array with the same diameters and distances was also studied. Hydrogen-carbon and hydrogen-hydrogen interactions were modeled with Lennard-Jones potentials for short range interactions and electrostatic interactions were added for hydrogen-hydrogen pairs to consider quantum contributions at low temperatures. At 194.5 K, Type I isotherms for large-diameter SWNTs and Type IV isotherms without hysteresis between adsorption and desorption processes for wider tube separations were observed. At 200 bars, the gravimetric hydrogen storage capacity of the SWNTs was reached or exceeded the US Department of Energy (DOE) target, but the volumetric capacity was about 70% of the DOE target. At 77 K, a two-step adsorption was observed, corresponding to a monolayer formation step followed by a condensation step. Hydrogen was adsorbed first to the inner surface of the nanotubes, then to the outer surface, intratubular space and the interstitial channels between the nanotube bundles. The simulation indicated that SWNTs of various diameters and distances in a wide range of configurations exceeded the DOE gravimetric and volumetric targets at under 1 bar.

Simulation of Vehicle-Structure Dynamic Interaction by Displacement Constraint Equations and Stabilized Penalty Method (변위제한조건식과 안정화된 Penalty방법에 의한 차량 주행에 따른 구조물의 동적상호작용 해석기법)

  • Chung, Keun Young;Lee, Sung Uk;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.671-678
    • /
    • 2006
  • In this study, to describe vehicle-structure dynamic interaction phenomena with 1/4 vehicle model, nonlinear Hertzian contact spring and nonlinear contact damper are adopted. The external loads acting on 1/4 vehicle model are selfweight of vehicle and geometry information of running surface. The constraint equation on contact surface is implemented by the Penalty method with stabilization and the reaction from constraint violation. To describe pitching motion of various vehicles two types of the displacement constraint equations are exerted to connect between car bodies and between bogie frames, i.e., the rigid body connection and the rigid body connection with pin, respectively. For the time integration of dynamic equations of vehicles and structure Newmark time integration scheme is adopted. To reduce the error caused by inadequate time step size, adaptive time-stepping technique is also adopted. Thus, it is expected that more versatile dynamic interaction phenomena can be described by this approach and it can be applied to various railway dynamic problems with low computational cost.

A Research on Applicability of Drone Photogrammetry for Dam Safety Inspection (드론 Photogrammetry 기반 댐 시설물 안전점검 적용성 연구)

  • DongSoon Park;Jin-Il Yu;Hojun You
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.30-39
    • /
    • 2023
  • Large dams, which are critical infrastructures for disaster prevention, are exposed to various risks such as aging, floods, and earthquakes. Better dam safety inspection and diagnosis using digital transformation technologies are needed. Traditional visual inspection methods by human inspectors have several limitations, including many inaccessible areas, danger of working at heights, and know-how based subjective inspections. In this study, drone photogrammetry was performed on two large dams to evaluate the applicability of digital data-based dam safety inspection and propose a data management methodology for continuous use. High-quality 3D digital models with GSD (ground sampling distance) within 2.5 cm/pixel were generated by flat double grid missions and manual photography methods, despite reservoir water surface and electromagnetic interferences, and severe altitude differences ranging from 42 m to 99.9 m of dam heights. Geometry profiles of the as-built conditions were easily extracted from the generated 3D mesh models, orthomosaic images, and digital surface models. The effectiveness of monitoring dam deformation by photogrammetry was confirmed. Cracks and deterioration of dam concrete structures, such as spillways and intake towers, were detected and visualized efficiently using the digital 3D models. This can be used for safe inspection of inaccessible areas and avoiding risky tasks at heights. Furthermore, a methodology for mapping the inspection result onto the 3D digital model and structuring a relational database for managing deterioration information history was proposed. As a result of measuring the labor and time required for safety inspection at the SYG Dam spillway, the drone photogrammetry method was found to have a 48% productivity improvement effect compared to the conventional manpower visual inspection method. The drone photogrammetry-based dam safety inspection is considered very effective in improving work productivity and data reliability.

Constructing Geological Cross-sections at Depth and Interpreting Faults Based on Limited Shallow Depth Data Analysis and Core Logging: Southern Section of the Yangsan Fault System, SE Korea (제한된 천부자료와 시추코어분석을 통한 심부지질단면도 작성과 단층 인지법: 한반도 남동부 양산단층대 주변에서의 적용)

  • Kim, Taehyung;Kim, Young-Seog;Lee, Youngmin;Choi, Jin-Hyuck
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.277-290
    • /
    • 2016
  • Deep geological cross-sectional data is generally not common nor easy to construct, because it is expensive and requires a great deal of time. As a result, geological interpretations at depth are limited. Many scientists attempt to construct geological cross-sections at depth using geological surface data and geophysical data. In this paper, we suggest a method for constructing cross-sections from limited geological surface data in a target area. The reason for this study is to construct and interpret geological cros-sections at depth to evaluate heat flow anomaly along the Yangsan fault. The Yangsan Fault passes through the south-eastern part of the Korean Peninsula. The cross-section is constructed from Sangbukmyeon to Unchonmyeon passing perpendicularly through the Yangsan Fault System trending NW-SE direction. The geological cross-section is constructed using the following data: (1) Lithologic distributions and main structural elements. (2) Extensity of sedimentary rock and igneous rock, from field mapping. (3) Fault dimension calculated based on geometry of exposed surface rupture, and (4) Seismic and core logging data. The Yangsan Fault System is composed of the Jain fault, Milyang fault, Moryang fault, Yangsan fault, Dongnae fault, and Ingwang fault which strike NNE-SSW. According to field observation, the western section of the Yangsan fault bounded by igneous rocks and in the eastern section sedimentary rocks are dominant. Using surface fault length we infer that the Yangsan Fault System has developed to a depth of kilometers beneath the surface. According to seismic data, sedimentary rocks that are adjacent to the Yangsan fault are thin and getting thicker towards the east of the section. In this study we also suggest a new method to recognize faults using core loggings. This analysis could be used to estimate fault locations at different scales.

Improvement of Net Structure and Operating System in Purse Seine Fishery for Gizzard-shad, Konosirus Punctatns(I) -Underwater Geometry and Behaviour of fish School to the Net - (전어 선망 어구 및 조업 시스템 개발(I) -어구의 수중 형상 및 전어 어군의 대망 행동-)

  • 장덕종;신형호;김동수;김진건
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.2
    • /
    • pp.156-163
    • /
    • 2002
  • In order to development the construction and dimension of fishing gear for gizzard shad coastal purse seine, first of all investigated to the sinking speed and underwater geometry of net, behaviour of fish school to the net during the fishing operation In the field. The results obtained are summarized as follows; 1. Average sinking speed of net was 13cm/sec in bunt, 9.0cm/sec and 9.5cm/sec in 170m and 280m of center, 4.9cm/sec in end wing side, therefore was fastest in start of shooting and decreased gradually during the shooting process. 2. The most of leadline was reached in bottom from the shooting immediately to hauling time and the mean depth of timber bar used equipment for the escaping prevention of fish school was within the 2.7m. 3. The fish school of gizzard shad was appearanced higher density and remained to the most time in bottom than the surface and repeated to vortical movement, and its tendency to distinct in rapid time of tide current. 4. Behaviour of fish school in the net was showed to the vortical movement by sinking and rising immediately with the shooting of net and then divide with the two shape to follow round the wall of net and no patterns straightly movement in the net, and tendency easily catched in fish school of the wall of net. 5. Escaping of fish school in the gap of wing side was to busy after that seting the timber bar, therefore its function for escaping prevention of fish school was very lowed. 6. Escaping behaviour of fish school was differenced with the depth of fishing ground, the above 20m escaped to busy through the below in ledline because the sinking speed of fish school is fast than the net.