• 제목/요약/키워드: Surface functionalization

검색결과 130건 처리시간 0.021초

금속-유기 골격체(Metal-organic Frameworks)를 활용한 물로부터의 유해 유기물의 흡착 제거 (Adsorptive Removal of Hazardous Organics from Water with Metal-organic Frameworks)

  • 서필원;송지윤;정성화
    • 공업화학
    • /
    • 제27권4호
    • /
    • pp.358-365
    • /
    • 2016
  • 수자원의 효과적 활용을 위해 유해물질을 제거하는 기술이 중요하며 흡착이 하나의 경쟁력 있는 기술로 검토/개발되고 있다. 흡착공정이 경쟁력을 가지기 위해서는 뛰어난 성능의 흡착제 개발이 중요하다. 유기물과 무기물 모두를 함유한 금속-유기 골격체(metal-organic frameworks, MOFs)는 큰 표면적, 세공부피, 잘 정의된 세공 구조 및 용이한 기능화 등으로 인해 다양한 흡착에 활용되고 있다. 본 고에서는 MOFs를 이용하여 물로부터 유해한 유기물을 흡착제거하는 기술을 요약, 정리하였다. 단순히 흡착량이나 속도를 증가하는 연구 대신에 흡착질과 흡착제 간의 상호작용의 메커니즘을 요약하였고 이를 위해 MOFs를 수정/기능화한 연구를 정리하였다. 이러한 요약으로부터 독자들은 유해물질의 흡착제거를 위한 흡착제의 필요 물성 및 수정에 대해 이해를 하게 될 것이며 흡착 외에 유기물들의 저장 및 전달에 대한 새로운 아이디어를 얻을 수 있을 것으로 기대된다.

다양한 아미노실란을 이용한 이산화탄소 흡착제 합성 및 흡착 특성 (Synthesis of CO2 Adsorbent with Various Aminosilanes and its CO2 Adsorption Behavior)

  • 전재완;고영수
    • 공업화학
    • /
    • 제27권1호
    • /
    • pp.80-85
    • /
    • 2016
  • 넓은 비표면적과 큰 기공 부피를 갖는 실리카에 다양한 아미노실란 화합물을 in-situ 중합법을 통해 기능화 후 이산화탄소 흡착 특성을 확인하였다. 이산화탄소 흡착 기능기로 아민기가 포함된 아미노실란 화합물이 사용되었다. 흡착제의 흡착 특성 분석을 위해 질소 흡 탈착 실험과 원소분석, in situ FT-IR, TGA를 이용하였다. 흡착제 합성 전후를 비교하였을 때 폴리아미노실란이 기능화되면 표면적과 기공부피 및 크기가 감소하였으며 실리카 기공 부피의 70%에 해당하는 폴리아미노실란 화합물을 기능화 시켰을 경우 기공 부피의 100% 기능화 보다 이산화탄소 흡착능이 향상되었다. 흡착 온도를 비교하며 $30^{\circ}C$보다 $75^{\circ}C$에서 폴리아미노실란 화합물의 열팽창과 자유부피 증가로 흡착능이 증가하였고, 2NS/NPS-2의 경우 기공 부피 70% 기능화와 흡착 온도 $75^{\circ}C$에서 9.2 wt%의 높은 $CO_2$ 흡착능을 보였다.

Analysis of Heavy Metal Toxic Ions by Adsorption onto Amino-functionalized Ordered Mesoporous Silica

  • Showkat, Ali Md;Zhang, Yu-Ping;Kim, Min-Seok;Gopalan, Anantha Iyengar;Reddy, Kakarla Raghava;Lee, Kwang-Pill
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.1985-1992
    • /
    • 2007
  • Ordered mesoporous silica (MCM-41) materials with different textural properties were prepared using alkyl (dodecyl, cetyl, eicosane) trimethyl ammonium bromide (DTAB, CTAB, ETAB, respectively) as structure directing surfactants, functionalized with amine groups and used as adsorbent for the toxic metal ions, Cr (VI), As (V), Pb (II) and Hg (II). Amino functionalization of mesoporous MCM-41 was achieved by cocondensation of N-[3-(trimethoxysilyl)-propyl] aniline with tetraethyl orthosilicate. Adsorption isotherm and adsorption capacity of the amine functionalized materials for Cr (VI), As (V), Pb (II) and Hg (II) ions were followed by inductively coupled plasma mass spectrometry (ICP-MS). Results demonstrate that amine functionalized MCM-41 prepared with ETAB showed higher adsorption capacity for Cr (VI), As (V), Pb (II) and Hg (II) ions in comparison to MCM-41 prepared with CTAB and DTAB. The higher adsorption capacity for MCM-41(ETAB) was correlated with amine content in the material (determined by CHN analysis) and relative decrease in pore volume and pore diameter. X-ray diffraction (XRD) analysis, nitrogen adsorptiondesorption measurements and Fourier Transform infrared spectrometry (FTIR) were used to follow the changes in the textural parameters and surface properties of the mesoporous materials as a result of amine functionalization to correlate with the adsorption characteristics. The adsorption process was found to depend on the pH of the medium.

Structural Deformation of Tungsten Diselenide Nanostructures Induced by Ozone Oxidation and Investigation of Electronic Properties Change

  • Eunjeong Kim;Sangyoeb Lee;Yeonjin Je;Dong Park Lee;Sang Jun Park;Sanghyun Jeong;Joon Sik Park;Byungmin Ahn;Jun Hong Park
    • Archives of Metallurgy and Materials
    • /
    • 제67권4호
    • /
    • pp.1469-1473
    • /
    • 2022
  • Tungsten diselenide (WSe2) is one of the promising transition metal dichalcogenides (TMDs) for nanoelectronics and optoelectronics. To enhance and tune the electronic performance of TMDs, chemical functionalization via covalent and van der Waals approaches has been suggested. In the present report, the electric and structural transition of WSe2 oxidized by exposure to O3 is investigated using scanning tunneling microscopy. It is demonstrated that the exposure of WSe2/high-ordered pyrolytic graphite sample to O3 induces the formation of molecular adsorbates on the surface, which enables to increase in the density of states near the valence band edge, resulting from electric structural modification of domain boundaries via exposure of atomic O. According to the work function extracted by Kelvin probe force microscopy, monolayer WSe2 with the O3 exposure results in a gradual increase in work function as the exposure to O3. Therefore, the present report demonstrates the potential pathway for the chemical functionalization of TMDs to enhance the electric performance of TMDs devices.

탄소나노튜브 및 환원된 산화그래핀과 고분자간 계면결합력이 나노복합재의 압전 거동에 미치는 영향 (Effect of Interfacial Bonding on Piezoresistivity in Carbon Nanotube and Reduced Graphene Oxide Polymer Nanocomposites)

  • 황상하;김현주;성대한;정영태;강구혁;박영빈
    • 접착 및 계면
    • /
    • 제13권3호
    • /
    • pp.137-144
    • /
    • 2012
  • 탄소나노소재의 화학적 기능화는 대부분 복합체 제조 시 고분자 모재(matrix)와의 계면 특성 향상을 위한 방법으로 적용되어 왔다. 계면결합력의 증가에 따른 효과는 기계적 물성의 증가를 통해 간접적으로 확인할 수 있으며, 이는 계면에서 효과적인 응력전달을 통해 설명된다. 보다 직접적으로 기능화를 통한 계면결합력 증가의 효과를 설명하기 위하여 피에조 저항효과를 관찰할 수 있으며, 이를 통하여 변형에 대한 복합체 내부의 전도성 충진재의 거동을 짐작해 볼 수 있다. 이를 위해 다중벽 탄소나노튜브(MWCNT)와 환원 그래핀(rGO)을 황산/질산 용액을 이용하여 산화반응을 통해 기능기를 도입하였으며, 기능화 전 후의 복합체의 전기적 저항 및 피에조 저항효과를 측정하였다. 결과로부터 기능기 도입으로 인해 증가한 탄소나노소재의 구조적 결함이 전기적 저항의 증가를 야기하지만 동일한 변형에 대하여 저항 변화가 더 크게 나타나 변형에 따른 복합체 내부 전도성 입자의 유동성이 증가함을 확인하였고, 이를 통해 계면결합력이 증가함을 피에조 저항효과 관찰을 통해 확인할 수 있었다.

Pd nanoparticles on poly(amidoamine) dendrimers modified single-walled carbon nanotubes as highly sensitive hydrogen gas sensors

  • Lee, Jun-Min;Lee, Eun-Song-Yi;Jeon, Kye-Jin;Ju, Seong-Hwa;Jung, Yeong-Ri;Kim, Sung-Jin;Lee, Woo-Young
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.93-93
    • /
    • 2009
  • In order to overcome the lack of reactivity with hydrogen gas ($H_2$) and utilize unique properties of Carbon Nano Tubes (CNTs) for the application to hydrogen sensors, there have been intensive works on the surface functionalization of CNTs with various types of nanoparticles including Pd. In the present work, we have investigated the effect of dendrimers and Pd nanoparticles to the hydrogen sensing properties of CNTs by comparing three types of samples: Pd/SWNTs (Sample I), Pd/dendrimer/SWNTs (Sample II) and heat-treated Pd/dendrimers/SWNTs (Sample III). As a result of IV measurement under the $H_2$ and air, sample I was found to have a high sensitivity (25%) to $H_2$, but to have a very slow response time (324 s) and recovery rate. On the other hand, Sample II was found to show much faster response time (3 s) and good recovery rate but lower sensitivity (8.6%) than Sample I which is due to induced dipole moments in the dendrimers. Interestingly, Sample III showed both fast response time (7 s) and high sensitivity (25%), indicating that the pyrolysis of the dendrimers during heat treatment which reduce the distance between the surface of the SWNTs and the functionalized Pd nanoparticles plays a key role in improving the sensitivity. The pyrolysis of the dendrimers in Pd nanoparticle-dendrimer-SWNTs was found to enable a significant electrical conductance modulation upon exposure to extremely low concentrations (10 ppm) of $H_2$ in air. Our results demonstrate that the Pd Nanoparticle-Grafted Single-Walled Carbon Nanotubes(SWNTs) with Dendrimers can be used to detect hydrogen, makingoutstanding properties such as fast response, and recovery time, high sensitivity, low detection limit at room temperature compared with other types of hydrogen sensors.

  • PDF

막증류 담수화를 위한 친수성/소수성 이중 표면 코팅 (Hydrophilic/Hydrophobic Dual Surface Coatings for Membrane Distillation Desalination)

  • 김혜원;이승헌;정성필;변지혜
    • 한국물환경학회지
    • /
    • 제38권3호
    • /
    • pp.143-149
    • /
    • 2022
  • Membrane distillation (MD) has emerged as a sustainable desalination technology to solve the water and energy problems faced by the modern society. In particular, the surface wetting properties of the membrane have been recognized as a key parameter to determine the performance of the MD system. In this study, a novel surface modification technique was developed to induce a Janus-type hydrophilic/hydrophobic layer on the membrane surface. The hydrophilic layer was created on a porous PVDF membrane by vapor phase polymerization of the pyrrole monomer, forming a thin coating of polypyrrole on the membrane walls. A rigid polymeric coating layer was created without compromising the membrane porosity. The hydrophilic coating was then followed by the in-situ growth of siloxane nanoparticles, where the condensation of organosilane provided quick loading of hydrophobic layers on the membrane surface. The composite layers of dual coatings allowed systematic control of the surface wettability of porous membranes. By the virtue of the photothermal property of the hydrophilic polypyrrole layer, the desalination performance of the coated membrane was tested in a solar MD system. The wetting properties of the dual-layer were further evaluated in a direct-contact MD module, exploring the potential of the Janus membrane structure for effective and low-energy desalination.

Studies on Morphologies and Mechanical Properties of Multi-walled Carbon Nanotubes/Epoxy Matrix Composites

  • Seo, Min-Kang;Byun, Joon-Hyung;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1237-1240
    • /
    • 2010
  • The mechanical properties of multiwalled carbon nanotubes (MWNTs)-reinforced epoxy matrix composites with different weight percentages of MWNTs have been investigated. Also, the morphologies and failure behaviors of the composites after mechanical tests are studied by SEM and TEM analyses. As a result, the addition of MWNTs into the epoxy matrix has a remarkable effect on the mechanical properties. And the fracture surfaces of MWNTs/epoxy composites after flexural strength tests show different failure mechanisms for the composites under different nanotube contents. Also, a chemical functionalization of MWNTs can be a useful tool to improve the dispersion of the nanotubes in an epoxy system, resulting in increasing the mechanical properties of the composite materials studied.

Current trends in dental implants

  • Gaviria, Laura;Salcido, John Paul;Guda, Teja;Ong, Joo L.
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제40권2호
    • /
    • pp.50-60
    • /
    • 2014
  • Tooth loss is very a very common problem; therefore, the use of dental implants is also a common practice. Although research on dental implant designs, materials and techniques has increased in the past few years and is expected to expand in the future, there is still a lot of work involved in the use of better biomaterials, implant design, surface modification and functionalization of surfaces to improve the long-term outcomes of the treatment. This paper provides a brief history and evolution of dental implants. It also describes the types of implants that have been developed, and the parameters that are presently used in the design of dental implants. Finally, it describes the trends that are employed to improve dental implant surfaces, and current technologies used for the analysis and design of the implants.

기능성 금 나노입자 (Functional Gold Nanoparticles)

  • 이준웅
    • 한국군사과학기술학회지
    • /
    • 제12권6호
    • /
    • pp.739-749
    • /
    • 2009
  • Ever since gold was found, this element has fascinated human beings. It is stable in air, and is illuminating for several thousands years without changing its colors. Nanoparticles are the basic nanommaterials, and, particularly gold nanoparticles show unique properties which are not shown in bulk states. Scientists are trying to apply these new properties to catalysts, bioscience, optics, etc. Judging from the current research activities, one can envisage that gold nanoparticles can play a major role in opening a new era in diagnoses and treatment of diseases like cancers. However to apply the nanoparticles one must modify the surface of the nanoparticles in order to give the materials certain functionalities. It certainly is worth to review the current research status and challenges in the area of functional gold nanoparticles.