Functional Gold Nanoparticles

기능성 금 나노입자

  • 이준웅 (한국과학기술정보연구원)
  • Received : 2009.08.03
  • Accepted : 2009.11.13
  • Published : 2009.12.31

Abstract

Ever since gold was found, this element has fascinated human beings. It is stable in air, and is illuminating for several thousands years without changing its colors. Nanoparticles are the basic nanommaterials, and, particularly gold nanoparticles show unique properties which are not shown in bulk states. Scientists are trying to apply these new properties to catalysts, bioscience, optics, etc. Judging from the current research activities, one can envisage that gold nanoparticles can play a major role in opening a new era in diagnoses and treatment of diseases like cancers. However to apply the nanoparticles one must modify the surface of the nanoparticles in order to give the materials certain functionalities. It certainly is worth to review the current research status and challenges in the area of functional gold nanoparticles.

Keywords

References

  1. Faraday, M., Philos. Trans. R. Soc.. London, Ser. A., 1857
  2. Mie, G., Ann. Phys., 25, 377, 1908
  3. 이준웅, '자성나노입자 기술동향', 기술동향 분석 보고서(BA132), 한국과학기술정보연구원, 2006
  4. Templeton, A. C., et al., J. Phys. Chem. B, 104, 564, 2000 https://doi.org/10.1021/jp991889c
  5. Chandrasekharan, N. et al., J. Phys. Chem. B., 104, 11103, 2000 https://doi.org/10.1021/jp002171w
  6. Daniel, M.-C., et al., Chem. Rev., 104, 293, 2004 https://doi.org/10.1021/cr030698+
  7. Gu, T., et al., Chem. Mater., 15, 1358, 2003 https://doi.org/10.1021/cm0209867
  8. Gaffet, E. et al., Mater. Charact. 36, 185, 1996 https://doi.org/10.1016/S1044-5803(96)00047-2
  9. Zhou, J. et al., J. Coll. Interface Sci., 331, 251, 2009 https://doi.org/10.1016/j.jcis.2008.12.002
  10. Watzky, M. and Finke, R., J. Am. Chem. Soc. 119, 10382, 1997 https://doi.org/10.1021/ja9705102
  11. Turkevitch, J. et al, Discuss. Faraday Soc. 11, 55, 1951 https://doi.org/10.1039/df9511100055
  12. Frens, G., Nature: Phys. Sci. 241, 20, 1973 https://doi.org/10.1038/physci241020a0
  13. Yonezawa, T. and Kunitake, T., Colloids Surf. A : 149, 193, 1999 https://doi.org/10.1016/S0927-7757(98)00309-4
  14. Schmid, G. et al., Chem. Ber., 114, 3634, 1981 https://doi.org/10.1002/cber.19811141116
  15. Giersig, M. and Mulvaney, P., Langmuir, 19, 3408, 1993
  16. Brust, M. et al. J. Chem. Soc., Chem. Commun. pp. 801~802, 1994 https://doi.org/10.1039/C39940000801
  17. Templeton, A. C. et al., Acc. Chem. Res., 33, 27, 2000 https://doi.org/10.1021/ar9602664
  18. Brust, M. et al., J. Chem. Soc., Chem. Commun., pp. 1655-1656, 1995 https://doi.org/10.1039/C39950001655
  19. Hostetler, M. J. et al., Langmuir, 14, 17, 1998 https://doi.org/10.1021/la970588w
  20. Zhou, J., et al, Langmuir, 23, 9170, 2007 https://doi.org/10.1021/la700449f
  21. Manna, A. et al., J. Colloid Interface Sci., 256, 297, 2002 https://doi.org/10.1006/jcis.2002.8691
  22. Mayya, K. S. et al., Adv. Funct. Mater., 13, 183, 2003 https://doi.org/10.1002/adfm.200390028
  23. M$\"{o}$ssmer, S., et al., Macromolecules, 33, 4791, 2000 https://doi.org/10.1021/ma992006i
  24. Sau, T. K., et al., J. Nanopart. Res., 3, 257, 2001 https://doi.org/10.1023/A:1017567225071
  25. Mallick, K., et al., J. Photochem. Photobiol., 140, 75, 2001 https://doi.org/10.1016/S1010-6030(01)00389-6
  26. Reed, J. A., et al., Ultrason. Sonochem., 10, 285, 2003 https://doi.org/10.1016/S1350-4177(03)00093-2
  27. Khomutov, G. B., Colloids Surf., pp. 243-267, 2002 https://doi.org/10.1016/S0927-7757(01)01079-2
  28. Nakamoto, M., et al., Chem. Commun. pp. 1622-1623, 2002
  29. Mafum$\'{e}$, F., et al., J. Phys. Chem. B, 106, 7575, 2002 https://doi.org/10.1021/jp020577y
  30. Shukla, R. et al., Small, 4, 1425, 2008 https://doi.org/10.1002/smll.200800525
  31. Ballauff, M., et al., Polymer, 48, 1815, 2007 https://doi.org/10.1016/j.polymer.2007.02.004
  32. Caruso, F., et al., J. Am. Chem. Soc., 121, 6039, 1999 https://doi.org/10.1021/ja990441m
  33. Caruso, F., et al., Lagmuir, 16, 9595, 2000 https://doi.org/10.1021/la000942h
  34. Sch$\"{u}$ler, C., et al., Macromol. Rapid Commun., 21, 750, 2000 https://doi.org/10.1002/1521-3927(20000701)21:11<750::AID-MARC750>3.0.CO;2-3
  35. Lvov, Y., et al., Analytical Chem., 73, 4212, 2001 https://doi.org/10.1021/ac010118d
  36. Schmid, G., 'Nanoparticles : From Theory to Application', Wiley-VCH Verlag GmbH & Co., 2004
  37. Park, S. J., et. al., Angew. Chem. Int. Ed., 39, 3845, 2000 https://doi.org/10.1002/1521-3773(20001103)39:21<3845::AID-ANIE3845>3.0.CO;2-O
  38. Patolsky, F., et al., J. Am. Chem. Soc., 125, 13918, 2003 https://doi.org/10.1021/ja035848c
  39. Lakowicz. J. R., et. al., Anal. Biochem., 280, 128, 2000 https://doi.org/10.1006/abio.2000.4495
  40. Letsinger, R. L., et al., Bioconjugate Chem., 11, 289, 2000 https://doi.org/10.1021/bc990152n
  41. Shaiu, D., et al., Nucleic Acids Res., 21, 99, 1993 https://doi.org/10.1093/nar/21.1.99
  42. Bruchez, M. Jr., et al., SCIENCE, 281, 2013, 1998 https://doi.org/10.1126/science.281.5385.2013
  43. Soukka, T., et al., Anal. Chem, 73, 2254, 2001 https://doi.org/10.1021/ac001287l
  44. Niemeyer, C. M., Angew. Chem. Int. Ed., 40, 4128, 2001 https://doi.org/10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
  45. Huo, Q. and Worden, J. G., J. Nanoparticle Res., 9, 1013, 2007 https://doi.org/10.1007/s11051-006-9170-x
  46. Cha, D. Y. et al., J. Catal., 18, 200, 1970 https://doi.org/10.1016/0021-9517(70)90178-8
  47. Schwank, J. et al., J. Catal., 63, 415, 1980 https://doi.org/10.1016/0021-9517(80)90095-0
  48. Haruta, M. et al., Chem. Lett., pp. 405-406, 1987
  49. Sakurai, H. et al., Catal. Today, 29, 361, 1996 https://doi.org/10.1016/0920-5861(95)00305-3
  50. Haruta, M. et al., Catal. Today, 129, 443, 1996
  51. Yuan, Y. et al., Chem. Lett., 9, 755, 1996
  52. Cunningham, D. A. et al., J. Catal., 177, 1, 1998 https://doi.org/10.1006/jcat.1998.2050
  53. Kozlov, A. I. et al., Appl. Catal. A, 182, 9, 1999 https://doi.org/10.1016/S0926-860X(98)00424-4
  54. Okumura, M. et al., Chem. Lett., 315, 1998
  55. Schimpf, S. et al., Catal. Today, 72, 63, 2002 https://doi.org/10.1016/S0920-5861(01)00479-5
  56. Mohr, C. et al., J. Catal., 213, 86, 2003 https://doi.org/10.1016/S0021-9517(02)00043-X
  57. Claus, P. et al., J. Am. Chem. Soc., 122, 11430, 2000 https://doi.org/10.1021/ja0012974
  58. Pasquato, L. et al., Chem. Commun., pp. 2253-2254, 2000
  59. Dawson, A. et al., J. Phys. Chem. B, 105, 960, 2001 https://doi.org/10.1021/jp0033263
  60. Storhoff, J. J. et al., J. Clust. Sci., 8, 179, 1997 https://doi.org/10.1023/A:1022632007869
  61. Mirkin, C. A. et al., Nature, 382, 607, 1996 https://doi.org/10.1038/382607a0
  62. Taton, T. A. et al., J. Am. Chem. Soc., 122, 6305, 2000 https://doi.org/10.1021/ja0007962
  63. Zhao, H. Q. et al., J. Nanopart. Res., 3, 321, 2001 https://doi.org/10.1023/A:1017502630894
  64. Schneider, B. H. et al., Biosens. Bioelectron., 15, 13, 2000 https://doi.org/10.1016/S0956-5663(00)00056-7
  65. Chow, G. M. et al., J. Colloid Interface Sci., 183, 135, 1996 https://doi.org/10.1006/jcis.1996.0527
  66. Pengo, P. et al. Langmuir, 19, 2521, 2003 https://doi.org/10.1021/la025982v
  67. Templeton, A. C. et al., J. Am. Chem. Soc., 121, 7081, 1999 https://doi.org/10.1021/ja990513+
  68. Boal, A. K., et al., J. Am. Chem. Soc., 121, 4914, 1999 https://doi.org/10.1021/ja9905288
  69. Gole, A. et al., Bioconjugate Chem., 12, 684, 2001 https://doi.org/10.1021/bc0001241
  70. Jia, J. et al., Anal. Chem., 74, 2217, 2002 https://doi.org/10.1021/ac011116w
  71. Hone, D. C. et al., Langmuir, 18, 2985, 2002 https://doi.org/10.1021/la0256230
  72. Phadtare, S. et al., Chem. Mater., 15, 1944, 2003 https://doi.org/10.1021/cm020784a
  73. Dragnea, B. et al., J. Am. Chem. Soc., 125, 6374, 2003 https://doi.org/10.1021/ja0343609
  74. Tchachenko, A. G. et al., J. Am. Chem. Soc., 125, 4700, 2003 https://doi.org/10.1021/ja0296935
  75. Li, J. et al., Sensors and Actuators B: Chemistry, 135, 322, 2008 https://doi.org/10.1016/j.snb.2008.08.038
  76. Xiang, C. et al., Sensors and Actuators B: Chemistry, 136, 158, 2009 https://doi.org/10.1016/j.snb.2008.10.058