• Title/Summary/Keyword: Surface engineering

Search Result 34,445, Processing Time 0.053 seconds

Fractal Approach to Passivated Surface of Stainless Steel

  • Heo, Jung-Ho;Lee, Yong-Heon;Shin, Heon-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.1
    • /
    • pp.12-16
    • /
    • 2010
  • The morphology of the passivated surface of stainless steel (SS) was quantitatively characterized based on fractal geometry. In particular, the surface irregularities of the passivated 304 and 439 SSs were comparatively analyzed in terms of their self-similar fractal dimensions. The passivated surface of 439 SS in an acid-based electrolyte proved to have a higher fractal dimension, as compared to that of 304 SS, esp. at a scale of several tens of nanometers, strongly indicating the higher irregularity of the passivated surface. It is anticipated that the fractal approach suggested herein might be effectively utilized to analyze the irregularity of the steel surface and/or the compactness of the oxide film.

Improved Method for Calculating Magnetic Field of Surface-Mounted Permanent Magnet Machines Accounting for Slots and Eccentric Magnet Pole

  • Zhou, Yu;Li, Huaishu;Wang, Wei;Cao, Qing;Zhou, Shi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1025-1034
    • /
    • 2015
  • This paper presented an improved analytical method for calculating the open-circuit magnetic field in the surface-mounted permanent magnet machines accounting for slots and eccentric magnet pole. Magnetic field produced by radial and parallel permanent magnet is equivalent to that produced by surface current according to equivalent surface-current method of permanent magnet. The model is divided into two types of subdomains. The field solution of each subdomain is obtained by applying the interface and boundary conditions. The magnet field produced by equivalent surface current is superposed according to superposition principle of vector potential. The investigation shows harmonic contents of radial flux density can be reduced a lot by changing eccentric distance of eccentric magnet poles compared with conventional surface-mounted permanent-magnet machines with concentric magnet poles. The FE(finite element) results confirm the validity of the analytical results with the proposed model.

Friction Drag Reduction using Microstructured Surfaces (마이크로 구조를 이용한 유체 표면마찰의 감소)

  • Park, Chi-Yeol;Bae, Seung-Il;Lee, Sang-Min;Ko, Jong-Soo;Chung, Kwang-Hyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.117-122
    • /
    • 2009
  • The hexagonal network-type PDMS microstructures were fabricated and they were employed to low-friction drag surfaces. While the lowest contact angle measured from the smooth surface was $108^{\circ}$ the highest contact angle measured from the microstructured surfaces was $145^{\circ}$ The moving speed of bullet-type capsule attached with a PDMS pad of smooth surface ($CA=108^{\circ}$) was 0.1261 m/s and that with a PDMS pad of microstructured surface ($CA=145^{\circ}$) was 0.1464 m/s. Compared with the smooth surface, the microstructured surface showed 16.1% higher moving speed. The network-type microstructures have a composite surface that is composed with air and PDMS solid. Therefore, the surface does not wet: rather water is lifted by the microstructures. Because of the composite surface, water shows slip-flow on the microstructures, and thus friction drag can be reduced.

Yeast cell surface display of cellobiohydrolase I

  • Lee, Sun-Kyoung;Suh, Chang-Woo;Hwang, Sun-Duk;Kang, Whan-Koo;Lee, Eun-Kyu
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.468-472
    • /
    • 2003
  • Recently, genetic engineering techniques have been used to display various heterologous peptides and proteins (enzyme, antibody, antigen, receptor and fluorescence protein, etc.) on the yeast cell surface. Living cells displaying various enzymes on their surface could be used repeatedly as 'whole cell biocatalysts' like immobilized enzymes. We constructed a yeast based whole cell biocatalyst displaying T. reesei cellobiohydrolase I (CBH I ) on the cell surface and endowed the yeast-cells with the ability to degrade cellulose. By using a cell surface engineering system based on ${\alpha}-agglutinin,$ CBH I was displayed on the cell surface as a fusion protein containing the N-terminal leader peptide encoding a Gly-Ser linker and the $Xpress^{TM}$ epitope. Localization of the fusion protein on the cell surface was confirmed by confocal microscopy. In this study, we report on the genetic immobilization of T. reesei CBH I on the S. cerevisiae and hydrolytic activity of cell surface displayed CBH I.

  • PDF

Fabrication of a Micro/Nano-scaled Super-water-repellent Surface and Its Impact Behaviors of a Shooting Water Droplet (마이크로/나노 구조를 갖는 초발수성 표면의 제작 및 분사 액적의 충돌 특성 연구)

  • Kim, Hyung-Mo;Lee, Sang-Min;Lee, Chan;Kim, Moo-Hwan;Kim, Joon-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.1020-1025
    • /
    • 2012
  • In this study, we fabricated the superhydrophobic and super-water-repellent surface with the micro/nano scale structures using simple conventional silicon wet-etching technique and the black silicon method by deep reactive ion etching. These fabrication methods are simple but very effective. Also we reported the droplet impact experimental results on the micro/nano-scaled surface. There are two representative impact behaviors as "rebound" and "fragmentation". We found the transition Weber number between "rebound" and "fragmentation" statements, experimentally. Additionally, we concerned about the dimensionless spreading diameters for our super-water-repellent surface. The novel characterization method was introduced for analysis including the "fragmentation" region. As a result, our super-water-repellent surface with the micro/nano-scaled structures shows the different impact behaviors compared with a reference smooth surface, by some meaningful experiments.

Investigation on the polystyrene surface coating method of graphene oxide (산화그래핀(GO)의 플라스틱(PS) 표면 코팅방법에 대한 연구)

  • Park, Jaebum;Lee, Jihoon;Huh, Jeung Soo;Park, Danbi;Lim, Jeong Ok
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.77-83
    • /
    • 2021
  • In this study, we investigated various coating methods of graphene oxide on the surface of a petri dish made of polystyrene and analyzed the physical and chemical properties of the coated surface. For coating, spinning, spraying and pressing methods were attempted. The coated surface was characterized by SEM, Raman Spectroscopy, AFM, FT-IR, UV-Vis Spectroscopy and Contact Angle measurement. By spin coating and spray coating, well distributed graphene oxide in the form of multiple islands on the plastic surface with an average size of 5 to 20㎛ are observed by SEM, and high binding energy between graphene oxide and plastic surface is measured by AFM. In case of hand press coating, graphene oxide of 10㎛ or more was observed, and low surface energy was measured. By FT-IR and Raman Spectroscopy analysis, surface coating of graphene oxide was confirmed.