DOI QR코드

DOI QR Code

Fractal Approach to Passivated Surface of Stainless Steel

  • Heo, Jung-Ho (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Yong-Heon (Stainless Steel Research Group, POSCO) ;
  • Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
  • 발행 : 2010.02.28

초록

The morphology of the passivated surface of stainless steel (SS) was quantitatively characterized based on fractal geometry. In particular, the surface irregularities of the passivated 304 and 439 SSs were comparatively analyzed in terms of their self-similar fractal dimensions. The passivated surface of 439 SS in an acid-based electrolyte proved to have a higher fractal dimension, as compared to that of 304 SS, esp. at a scale of several tens of nanometers, strongly indicating the higher irregularity of the passivated surface. It is anticipated that the fractal approach suggested herein might be effectively utilized to analyze the irregularity of the steel surface and/or the compactness of the oxide film.

키워드

참고문헌

  1. P. Schmuki, J. Solid State Electrochem., 6 (2002) 145. https://doi.org/10.1007/s100080100219
  2. C.-O. A. Olsson, D. Landolt, Electrochim. Acta, 48 (2003) 1093. https://doi.org/10.1016/S0013-4686(02)00841-1
  3. C. Calinski, H.-H. Strehblow, J. Electrochem. Soc., 136 (1989) 1328. https://doi.org/10.1149/1.2096915
  4. M. F. Toney, A. J. Davenport, L. J. Oblonsky, M. P. Ryan, C. M. Vitus, Phys. Rev. Lett., 79 (1997) 4282. https://doi.org/10.1103/PhysRevLett.79.4282
  5. P. Schmuki, S. Virtanen, H. S. Isaacs, M. P. Ryan, A. J. Davenport, H. Bohni, T. Stenberg, J. Electrochem. Soc., 145 (1998) 791. https://doi.org/10.1149/1.1838347
  6. V. Maurice, W. P. Yang, P. Marcus, J. Electrochem. Soc., 145 (1998) 909. https://doi.org/10.1149/1.1838366
  7. D. Zuili, V. Maurice, P. Marcus, J. Phys. Chem. B, 103 (1999) 7896. https://doi.org/10.1021/jp9911088
  8. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York, 1983.
  9. B. B. Mandelbrot, D. E. Passoja, A. J. Paullay, Nature, 308 (1984) 721. https://doi.org/10.1038/308721a0
  10. C. S. Pande, L. E. Richards, N. Louat, B. D. Dempsey, A. J. Schwoeble, Acta Metall., 35 (1987) 1633. https://doi.org/10.1016/0001-6160(87)90110-6
  11. Z. G. Wang, D. L. Chen, X. X. Jiang, S. H. Ai, C. H. Shih, Scripta Metall., 22 (1988) 827. https://doi.org/10.1016/S0036-9748(88)80057-7
  12. L. Nyikos, T. Pajkossy, Electrochim. Acta, 30 (1985) 1533. https://doi.org/10.1016/0013-4686(85)80016-5
  13. B. Sapoval, J.-N. Chazalviel, J. Peyriere, Phys. Rev. A, 38 (1988) 5867. https://doi.org/10.1103/PhysRevA.38.5867
  14. C. Douketis, Z. Wang, T. L. Haslett, M. Moskovits, Phys. Rev. B, 51 (1995) 11022. https://doi.org/10.1103/PhysRevB.51.11022
  15. H.-C. Shin, S.-I. Pyun, J. Electroanal. Chem., 531 (2002) 101. https://doi.org/10.1016/S0022-0728(02)01068-9
  16. M. Knudsen, Ann. Phys. (Leipzig), 28 (1909) 75.
  17. A.J. Burggraaf, J. Membr. Sci., 155 (1999) 45. https://doi.org/10.1016/S0376-7388(98)00295-6
  18. S. Haupt, H.-H. Strehblow, Corros. Sci., 37 (1995) 43. https://doi.org/10.1016/0010-938X(94)00104-E