• Title/Summary/Keyword: Surface energy anisotropy

Search Result 46, Processing Time 0.028 seconds

SWR as Tool for Determination of the Surface Magnetic Anisotropy Energy Constant

  • Maksymowicz, L.J.;Lubecka, M.;Jablonski, R.
    • Journal of Magnetics
    • /
    • v.3 no.4
    • /
    • pp.105-111
    • /
    • 1998
  • The low energy excitations of spin waves (SWR) in thin films can be used for determination of the surface anisotropy constant and the nonhomogeneities of magnetization in the close-to-surface layer. The dispersion relation in SWR is sensitive on the geometry of experiment. We report on temperature dependence of surface magnetic anisotropy energy constant in magnetic semiconductor thin films of$ CdCr_{2-2x}In_{2x}Se_4$ at spin glass state. Samples were deposited by rf sputtering technique on Corning glass substrate in controlled temperature conditions. Coexistence of the infinite ferromagnetic network (IFN) and finite spin slusters (FSC) in spin glass state (SG) is know phenomena. Some behavior typical for long range magnetic ordering is expected in samples at SG state. The spin wave resonance experiment (microwave spectrometer at X-band) with excited surface modes was applied to describe the energy state of surface spins. We determined the surface magnetic anisotropy energy constant versus temperature using the surface inhomogeneities model of magnetic thin films. It was found that two components contribute to the surface magnetic anisotropy energy. One originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the stray field of the surface roughness. The second one comes from the demagnetizing field of close-to surface layer with grad M. Both term linearly decrease when temperature is increased from 5 to 123 K, but dominant contribution is from the first component.

  • PDF

Effect of Surface Energy Anisotropy on the Equilibrium Shape of Sapphire Crystal

  • Choi, Jung-Hae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.907-911
    • /
    • 2002
  • Using the two-dimensional Wulff plot, the equilibrium shape of a sapphire crystal was investigated as a function of surface energy anisotropy. Depending on the relative values of surface energy for various facet planes, the projected shape of equilibrium sapphire was determined to be rectangle, parallelogram, hexagon or octagon. The results are compared with the experimentally observed shapes of internal cavities of submicron range in sapphire single crystals.

Magnetic Anisotropy of Oxygen-deficient Fe/MgO(001) System: An ab Initio Study

  • Choe, Hui-Chae;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.61-61
    • /
    • 2011
  • Using ab initio calculations, we study the MgO(001) and Fe/MgO(001) surface phases and the effects of interface structure on the Fe/MgO magnetic anisotropy. The surface phase diagrams of MgO(001) and Fe/MgO(001) show that the most stable surface structures are either defect-free surface or the surfaces with oxygen vacancies in c($2{\times}1$) periodicity for the systems. By the formations of the oxygen vacancy rows on MgO(001) surface, the in-plane magnetic anisotropy energy of Fe overlayer is reduced while the perpendicular magnetic anisotropy energy is increased from 0.1 to 0.5 meV per Fe atom.

  • PDF

Interface dependent magnetic anisotropy of Fe/BaTiO3(001): an ab initio study

  • Choe, Hui-Chae;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.314-314
    • /
    • 2011
  • Using first principles calculations, we investigated the interface structure effects on the magnetic properties of the Fe/BaTiO3 system. On the BaO-terminated surface, a Fe monolayer is formed as two Fe atoms are adsorbed on the top sites of Ba and O in the ($1{\times}1$) surface unit and a Fe ML is formed on the TiO2-terminated surface as two Fe atoms are adsorbed on the two O top sites. The magnetic anisotropy energy of Fe was higher on the TiO2?-erminated surface (1.5 eV) than on the BaO-terminated surface (0.5 eV). The decomposed electron density of the states showed that the stronger hybridization of Fe with the TiO2 layer than with the BaO layer is the most important reason for the higher magnetic anisotropy energy.

  • PDF

Simulation on the Microstructure Development of Porous Materials with Respect to the Surface Energy Anisotropy (표면에너지의 이방성에 따른 다공체의 조직변화 시뮬레이션)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.500-506
    • /
    • 2007
  • The effects of anisotropic surface energy on the microstructure development of porous materials have been studied through Monte Carlo simulation using a three dimensional lattice. The changes in porosity ($f_v$), mean grain diameter ($D_s$), fraction of connected pores ($f_{v,c}$) and contiguity of the solid phase (C) were examined in cases with three different ${\gamma}_{SV}$ relations and initial grain diameters ($D_{s,o}$). It has been found that larger ${\gamma}_{SV}$ enhances sintering of particles and increases C and does not change $D_s$. And Introducing anisotropic ${\gamma}_{SV}$ brought an increase in $f_v$ and $f_{v,c}$ and an decrease in $D_s$ and C, and this tendency become more marked for fine $D_{s,o}$.

Magnetotelluric modeling considering vertical transversely isotropic electrical anisotropy (수직 횡등방성 전기적 이방성을 고려한 자기지전류탐사 모델링)

  • Kim, Bitnarae;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.232-240
    • /
    • 2015
  • Magnetotelluric (MT) survey investigates electrical structure of subsurface by measuring natural electromagnetic fields on the earth surface. For the accurate interpretation of MT data, the precise three-dimensional (3-D) modeling algorithm is prerequisite. Since MT responses are affected by electrical anisotropy of medium, the modeling algorithm has to incorporate the electrical anisotropy especially when analyzing time-lapse MT data sets, for monitoring engineered geothermal system (EGS) reservoir, because changes in different-vintage MT-data sets are small. This study developed a MT modeling algorithm for the simulation MT responses in the presence of electrical anisotropy by improving a pre-existing staggered-grid finite-difference MT modeling algorithm. After verifying the developed algorithm, we analyzed the effect of vertical transversely isotropic (VTI) anisotropy on MT responses. In addition, we are planning to extend the applicability of the developed algorithm which can simulate not only the horizontal transversely isotropic (HTI) anisotropy, but also the tiled transversely isotropic (TTI) anisotropy.

Formation of Induced Anisotropy in Amorphous Sm-Fe Based Alloy Thin Films (비정질 Sm-Fe계 합금 박막의 유도자기이방성 형성)

  • 송상훈;이덕열;한석희;김희중;임상호
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.261-269
    • /
    • 1998
  • Induced anisotropy with the energy of $6{\times}10^4\; J/m^3$ is obtained in amorphous Sm-Fe based thin films which are fabricated by rf magnetron sputtering under a magnetic field of 500~600 Oe. Compared with conventional thin films, the anisotropic thin films exhibit a similar "saturation" magnetostriction, but show a very large anisotropy in magnetorstiction which is of significant practical importance due to increased strain at a particular direction. It is shown from a systematic investigation over a wide composition range for binary Sm-Fe alloys that anisotropy is also induced, though small, during a normal sputtering procedure due to the stray field, and the largest anisotropy is observed in the composition range of 25~30 at.% Sm. Furthermore, induced anisotropy is also found to be formed by magnetic annealing, but the anisotropy energy is much smaller than that by magnetic sputtering. This may be because the volume diffusion by which atoms move during magnetic annealing to from induced anisotropy is much slower than the surface diffusion which is expected to be a dominant factor during magnetic sputtering.puttering.

  • PDF

Giant Perpendicular Magnetic Anisotropy of a Fe(001) Surface: A Density Functional Study

  • Odkhuu, D.;Rhim, S.H.;Yun, Won Seok;Hong, S.C.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.29-29
    • /
    • 2013
  • We predict agigantic perpendicular magnetocrystalline anisotropy (MCA) in Fe (001) capped by 5d transition metal (TM) overlayers by using first principles calculations. Analysis of atom-by-atom contribution to MCA reveals that gigantic MCA as large as 11 meV/TM originates not from Fe atoms but from the 5d TMs through the strong spin-orbit coupling. More specifically, it is the hybridization between TM and Fe d orbitals that also induces non-negligible magnetic moments in TM. Furthermore, spin-channel decompositions of MCA matrix with and without the presence of Fe substrate identify the electronic origin of the perpendicular MCA that the down-down channel contribution plays the most crucial role for the sign changes of MCA of TM overlayers upon the hybridization with Fe-3d.

  • PDF

Liquid Crystal Alignment on Solid Substrates

  • Kim, Jae-Hoon;Shi, Yushan;Kumar, Satyendra
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.755-758
    • /
    • 2005
  • The mechanism responsible for liquid crystal (LC) alignment on solid substrates treated with mechanical rubbing or polarized UV is not understood. The results of x-ray reflectivity study of LC alignment on a large number of different alignment layers show that the anisotropy in the surface roughness of the substrate completely determines the LC alignment. The anchoring energy depends on the degree of roughness anisotropy and chemical interactions between the substrate and LC molecules.

  • PDF